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Introduction

The influence of material damping on sound reduction
can be examined using model scale test facilities [1]. To
do this, dynamically proper model scale materials are
needed. Candidates such as acrylic glass and silicone
show linear viscoelastic effects.

For materials of that type, there are several standardised
measurement methods to acquire the dynamic properties,
e.g. [2, 3, 4, 5]. Usually, these methods feature easy appli-
cability, but only yield results tied to the measurement
situation and are, therefore, of limited usability. This
lack is caused by the impurity of the strain (compression,
shear, elongation, etc.) throughout the macroscopic
sample. Therefore, [2] distinguishes between different
moduluses according to the experimental set-ups used
and [3] defines form functions for correction when using
special sample geometries.

Other types of measurement methods have been devel-
oped to improve the significance of the results, e.g. [6,
7, 8, 9]. They use mathematical models to calculate the
spatial distribution of different strain types inside the
sample. Thereby, the infinitesimal material properties
are embedded into the system and can be accessed for
the identification, independent of shape and load of the
system.

Mostly these improved methods use one experimental
set-up to gain their results. This paper presents an
extension of that method type: Different set-ups are
combined to gain comprehensive information about the
test material.

Viscoelasticity

Linear viscoelasticity can be described in numerous ways,
using convolution integrals, inner variables, frequency-
dependent moduluses and more, see e.g. [6, 7, 8, 10,
11]. When using convolution integrals, the correlation
between the stress tensor σjk and the strain tensor εlm

is given by the tensor of memory functions Mjklm. For
the simplicity of the formulas, spatial variables �x will be
omitted:

σjk(t) =

∫ t

τ=−∞

Mjklm(t− τ) ε̇lm(τ) dτ. (1)

If the material is isotropic, then Mjklm only depends on
two functions, e.g. K for compression and G for shear.

When the strain tensor εlm is expressed by the displace-
ment uj :

εlm =
1

2

(
∂ul

∂xm
+

∂um

∂xl

)
, (2)

and the independent memory functions K und G are
given by the ansatz (Prony series):

K(t) =

n∑
p=0

Kp e−bp t ; G(t) =

n∑
p=0

Gp e−bp t, (3)

with positive constants Kp, Gp and bp, and when the
convolution integral is treated with integration by parts,
then the stress tensor σjk becomes:

σjk =

n∑
p=0

[
(Kp −

2

3
Gp) δjk

3∑
m=1

∂(um − ym,p)

∂xm

]
(4)

+

n∑
p=0

[
Gp

(
∂(uj − yj,p)

∂xk
+

∂(uk − yk,p)

∂xj

)]

ẏj,p = bp(uj − yj,p) , p = 0, . . . , n. (5)

The entities yj,p are inner variables of a displacement
type, which originate – simply by definition – from
the remaining integrals. δjk is the Kronecker symbol.
Usually, b0 is defined as zero. Then, K0 and G0 are the
static moduluses known from linear elasticity (Hooke’s
law). The equations (4) and (5) provide an easy way
to transfer a known elastic problem to a viscoelastic
problem.

In the case of harmonic signals of the ei Ω t type with
the angular frequency Ω and i =

√
−1, elimination

of the inner variables yields a formula for the complex
amplitudes of stress σ̂jk(Ω) and displacement ûj(Ω):

σ̂jk(Ω) =

[
K(Ω)−

2

3
G(Ω)

](
δjk

3∑
m=1

∂ûm(Ω)

∂xm

)
(6)

+ G(Ω)

(
∂ûj(Ω)

∂xk
+

∂ûk(Ω)

∂xj

)
,

with the complex moduluses

K(Ω) =

n∑
p=0

Kp
iΩ

iΩ + bp
(7)

G(Ω) =

n∑
p=0

Gp
iΩ

iΩ + bp
. (8)

The real and imaginary parts are named storage and loss
modulus, respectively. The same set of parameters Kp,
Gp and bp simultaneously describes the material in the
time domain (3) and in the frequency domain (7) and
(8).

Young’s modulus E can be calculated from the modu-
luses in (7) and (8), see e.g. [12]:

E(Ω) =
9 K(Ω)G(Ω)

3 K(Ω) + G(Ω)
. (9)
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This way, certain conditions of thermodynamics are
fulfilled automatically.

Identification

The parameters Kp, Gp and bp and their number n must
be determined individually for each material. Therefore,
systems and measurands are chosen.

These systems are then realised experimentally and
mathematically. Concerning the experimental set-ups,
the chosen systems must enable an optimal experimental
realisation of the exact mathematical boundary condi-
tions and excitations. To avoid unknown influences from
joints, it is recommended to choose free boundaries.
Concerning the mathematical models, the experimentally
occuring strain states should be as simple as possible to
enable easy modeling.

Then, measurements and simulations are performed and
their results are compared. The duration of excitation
should be chosen to be as short as possible to avoid
spontaneous heating of the samples. Short-time sweeps
and maximum-length series were used. If accessible,
analytical solutions of the equations of motion should
be preferred to numerical solutions, as the latter usually
require considerably more time to process.

The similarity of the compared measurements and simu-
lations is expressed by a single number value. A search
algorithm such as [13] repeats selecting parameters for
the material, restarting the simulation, appraising the
value of comparison and thereby routing the parameters
to an optimum.

This paper now presents combined experiments for iden-
tification, i.e. multiple systems are chosen, but all of
their simulations are based on one set of parameters.
This one set of parameters will be valid for the material
itself, regardless of the shape or load of the sample.

Experiments

One model scale material to be examined was silicone.
To identify its parameters, two systems were chosen.

Rod specimen

The first system was a homogenous, finite rod with
circular cross section, excited at one end and with a
terminating mass at the other end. Figure 1 shows
the set-up with the white silicone rod suspended from
a shaker. The rod was excited using maximum-length
series, which can be transformed to harmonic excitation.
A uniaxial stress-strain state was supposed to develop
inside the rod. So the well-known governing equation is

−ρ Ω2u(Ω, x) = E(Ω)u′′(Ω, x), (10)

with Ω being the angular frequency and ρ the mass
density. For the measurand, the transfer function of
acceleration between the top and bottom surface of
the rod was chosen. This was measured by the two
accelerometers attached to the rod, and it can be easily
calculated by applying the boundary conditions to (10),

Figure 1: A finite rod of silicone (white), suspended
from a shaker, terminating mass at the bottom
surface, one accelerometer attached at each end

using an exponential ansatz.

The length of the rod and the terminating mass were
varied.

Beam specimen

The second system was a beam. Since silicone is too
limp for a homogenous beam, it was stiffened by two
surrounding thin aluminium slats. The cross section is
schematically shown in figure 2.

Figure 2: Cross section of the beam specimen: outer
layers of aluminium, inner layer of silicone, symmetry
in vertical direction

A beam of that cross section was symmetrically mounted
on a shaker. Introducing this symmetry, the boundary
conditions at the load point were known for the mathe-
matical model. The whole system is schematically shown
in figure 3. The beam was excited using maximum-length

Shaker

Sample

Accelerometers

Figure 3: A sandwich beam, symmetrically mounted
on a shaker, accelerometers attached

series, which can be transformed to harmonic excitation.
The transfer function of acceleration between the load
point and the free ends was measured.
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No elementary theory exists for such a sandwich beam.
So, three Timoshenko beams were kinematically fixed to
each other. The vertical displacement w of all layers is
identical. The inclinations of the cross sections of the
layers are expressed by one of them, e.g. the inclination
ϕ of the inner layer. The equations for the amplitudes
ŵ(Ω, x) and ϕ̂(Ω, x) for harmonic excitation are:

0 = Go (doŵ
′′ − diϕ̂

′) +
1

2
di Gi (ŵ′′ + ϕ̂′) (11)

+ (2ρodo + ρidi)Ω2ŵ

0 = b Go (doŵ
′ − diϕ̂) +

1

2
b di Gi (ŵ′ + ϕ̂) (12)

−
(

CiIi − 2CoIo
di

do

)
ϕ̂′′ −

(
ρiIi − 2ρoIo

di

do

)
Ω2ϕ̂,

with the angular frequency Ω, the width of the sample
b, the thicknesses of the layers do and di, the area
momenta Io and Ii, the mass densities ρo and ρi, the
shear moduluses Go and Gi and the moduluses of plain
or uniaxial elongation Co and Ci. The dependencies of
ŵ and ϕ̂ of Ω and x were not written. Indices o and
i denote the outer and inner layers, respectively. This
system of ordinary differential equations can be solved
using elemental methods.

Results

The identification was started with a small number n of
inner variables. After each run of the search algorithm,
the number n was increased and the search was restarted.
Finally, a set with n = 8 was reached.

It is possible to enable the identification of the time
constants bp. This can lead to strange distributions of the
bp, featuring gaps or cumulations on the time interval.

Here, the search for the bp was disabled and the time
constants were defined using bp = 10p/2 s−1 for all p =
1, . . . , 8 and b0 = 0, as stated above. This distributed
them uniformly over the time interval.

The following figures 4 and 5 show the agreement of
the measured and calculated transfer functions for one
experiment with the rod specimen and for the experiment
with the beam specimen, respectively.
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Figure 4: Agreement of measured and calculated
transfer functions for the 2nd rod specimen (R2)
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Figure 5: Agreement of measured and calculated
transfer functions for the beam specimen (B1)

Overall, the agreement between the measurement and
the calculation is good. There are only some small
deficiencies concerning the rod specimen at the high
frequencies, regarding the matching of the resonance
frequencies. At the lowest resonance of about 13 Hz,
its amplitude is not adequately met.

Concerning the beam specimen, the three lowest reso-
nance frequencies are not met to a certain degree. The
reason for this is seen in the mathematical model used
for the sandwich beam which seems too simple for the
system. So a future task will be to design a better model,
possibly using finite elements for a three-dimensional
analysis. Additionally, the amplitudes of the resonances
do not always fit. This may result from the fact that the
resonances of the beam specimen are very narrow and
are therefore not always exactly met by the frequency
resolution of the measurement or the calculation.

The figures 6, 7 and 8 show the results of the parame-
ters in the form of the frequency-dependent moduluses,
calculated using (7), (8) and (9). In each figure, the real
and imaginary parts of the moduluses are given, named
storage and loss moduluses, respectively.

The loss moduluses of K, G and E show successive
changes throughout the frequency interval given. The
amount of variation is a factor of about five for all three
cases. The storage moduluses of K and E change only
slightly by about 20% over the frequency interval shown.
The storage modulus of G changes by a factor of about
three.

It is obvious that using a single constant value for the
material properties, such as the static moduluses, is
hardly a good representation of the dynamic properties
measured.

Conclusions

It was shown that using multiple systems for a combined
identification of the parameters is possible. This yields
one set of parameters which is then valid for the material
itself and is not bound to a specific geometry or load.

It was seen that some discrepancies still exist between
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the measured and calculated transfer functions for some
systems and frequency intervals. It is intended to
reduce these discrepancies by the use of more extensive
mathematical models. Of course, more time will be
required to process them.

Here, the parameters of silicone were identified. Other
model scale materials such as acrylic glass and of course
real scale materials such as lime-sand brick will be treated
using the method presented.

Uncertainties are another important task to work on.
They could be given as uncertainties for the parameters
Kp, Gp and bp or for the frequency-dependent moduluses
calculated therefrom.
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Figure 6: Storage and loss modulus of compression
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Figure 7: Storage and loss modulus of shear
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Figure 8: Storage and loss modulus of elongation
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