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Abstract
In this paper we investigate a novel technique for mod-
eling long temporal context in phoneme recognition.
Conventional techniques take a global context consisting
of consecutive concatenated acoustic features as input
for a phoneme classifier. Thus, the classifier must learn
different variations corresponding to different parts of the
global context. In contrast to conventional techniques,
our scheme decomposes the temporal context of each
phoneme into a set of slices. Each temporal slice is
input for a non-linear classifier given by a Multilayered
Perceptron (MLP). Every MLP is trained using the
central label of the global context. Thus, the assumption
that the current phoneme occupies the global context
is preserved. Furthermore, each MLP can robustly
model different temporal context inside each phoneme.
The outputs of the classifiers are combined to estimate
posterior probabilities of phoneme-level classes. These
posteriors are employed in a hybrid HMM/MLP frame-
work. Experiments have shown an absolute phoneme
error reduction of 3.6% compared to a baseline classifier
with the same context length.

Introduction
Phoneme recognition has received much attention in
the field of automatic speech recognition (ASR). A
phoneme is defined as the minimal unit of speech sound
in a language that can serve to distinguish meaning.
Phoneme recognition is highly utilized for improving
speech recognition [1]. Some further applications of
phoneme recognition are found in speaker recognition [2],
language identification [3] and keyword spotting [4]. For
this reason, this module is required to be highly accurate.

A common and successful approach for phoneme recog-
nition is based on Hybrid Hidden Markov Models -
Multilayered Perceptrons (HMM/MLP) [5]. In a hybrid
system, the MLP outputs are used as HMM state
output probabilities. This method has the considerable
advantage that the MLP is trained to discriminatively
classify phonemes. In addition, the MLP can easily
incorporate a long temporal context without making
explicit assumptions. The latter property is particularly
important because the characteristics of a phoneme can
be spread on a long temporal context [6]. However, the
amount of temporal information given to the MLP is
limited by the quantity of training data and parameters
of the classifier.

Different approaches have been proposed aiming to ex-
ploit the context information under the constraint of

sparse training data. A general approach consists of
dividing the classification task with several specialized
classifiers, followed by a combination of all of them [7,
8, 9]. In this paper we present a novel approach for
exploiting the temporal context of input patterns. We
train several MLPs, where each one is specialized in a
particular context of a phoneme. Then, the MLPs are
combined by a merger. Our approach differs from other
hitherto existing systems [9] since our scheme introduces
overlapped slices. We will show that the introduction
of overlapped slices out-performs the non-overlapped
technique since the transition is better modeled.

This paper is organized as follows: next section describes
the experimental setup. An explanation and detailed
evaluation of the proposed approach is given in the
section context extension. Finally, conclusions and a
proposal for future work are presented in the last section.

Experimental setup
Our work is based on the TIMIT corpus [10] without
the SA dialect sentences. The whole database is divided
in three parts. The training data set consists of 3346
utterances spoken by 419 speakers, the cross-validation
data set with 350 utterances spoken by 44 speakers and
the standard test data set consisting of 1344 utterances
spoken by 168 speakers. We use the 39 phoneme set given
in [11] with the difference that closures are merged to the
regarding burst as it was performed in [12].

We calculate feature vectors of dimensionality 39, con-
sisting of 13 MFCCs, including log-energy, delta and
double delta coefficients. The 39-dimensionality feature
vectors are under global mean and variance normaliza-
tion. Each feature vector is extracted from a window of
25ms of speech with a shift of 10ms.

We trained the MLPs with the Quicknet software
tool [13]. Three layer perceptrons were implemented
with 1000 hidden units. The number of output units
corresponds to 39 and 117, for 1-state and 3-state models
respectively with the softmax nonlinearity function at
the output. The standard back-propagation algorithm
with cross entropy error criteria is used for training
the neural network. The learning rate reduction and
stop training criteria are controlled by the frame error
rate in cross-validation to avoid overtraining. The
phoneme insertion penalty has been set to the one giving
maximum phoneme accuracy in the cross-validation.

TIMIT hand labels are utilized for the initial training
of the neural networks. MLPs are then re-trained em-
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Figure 1: Varying frame window size at the input of a single
MLP classifier for 1-state and 3-state models.

ploying labels from force alignment. For 3-state models,
the phoneme hand labels are uniformly distributed into
states before starting the iterative process.

A Viterbi decoder has been implemented with a mini-
mum duration of three states per phoneme. Furthermore,
it is assumed that all phonemes and states are equally
distributed. No language model is used, unless otherwise
stated. The silence is discarded for evaluation. Finally,
the phoneme accuracy (PA) and frame accuracy (FA) are
used as a measure of performance.

Context extension

Motivation
The main motivation of this work is to exploit as much
as possible the context information, under the constraint
of finite training data. A conventional way for increasing
the context is performed by concatenating several feature
vectors, resulting in a multi-feature vector. Thus, the
multi-feature vector is given at the input of the MLP
phoneme classifier. Figure 1 shows results when different
feature vectors are concatenated, forming a window of
different frame lengths. For a single MLP classifier, we
can observe that the simple approach of increasing the
number of frames of the window has an optimal point
(∼ 15frames) where the performance is maximized. If
the number of frames is moved away from this optimal
point, either by decreasing or increasing frames, the
performance decreases.

To estimate how much information can be contained in
a window and how many phonemes it can involve, we
calculated the average number of consecutive frames per
phoneme from the training data. In Figure 2 it is shown
that the phoneme /oy/ in average stretches over the
longest time interval, with an average number of 16.9
frames (∼ 170ms). The shortest phoneme according to
its average number of frames is /dx/ with 2.9 frames(∼
30ms). The dashed line marks the average number of
frames that any phoneme may occupy: 8.9 frames(∼
90ms).

The average number of frames per phoneme are coherent
with the results given in Table 1. Having 15 frames
in a window, the context encloses entirely all possible
phonemes, optimizing in this way the use of a reduced

training data set. If the window is highly enlarged,
information of other phonemes may start to appear in the
context currently considered. The neighboring phonemes
cause specific coarticulation effects. This information is
useful for improving phoneme classification. In contrast,
several combinations of phonemes must be observed
during training, requiring more training data.

In the next section we will introduce an approach in
which, the context can be highly augmented, decom-
posing a large context into several slices without the
necessity of requiring more training data.

Proposed approach
To augment the context information, the conventional
method increases the window size at the input of a
single MLP. In contrast we propose to introduce several
MLPs which are placed at different points in time. Each
MLP is trained using the same label belonging to the
central frame of the entire context. Thus, the assumption
that the current phoneme occupies the global context is
preserved. In addition, each MLP has a fixed number
of input frames and the input window of different MLPs
may overlap each other. Figure 3a shows this approach.
Here, three windows or slices corresponding to the input
of three different MLP are overlapped. Each slice covers a
total of 9 consecutive frames, i.e. 9 concatenated MFCCs
feature vectors. This number was selected based on the
results given in Figure 1 under constraints of reduced
number of parameters and optimum performance. In
addition, we chose an overlap of 4 frames between
different slices. Therefore, Figure 3a covers a total of
19 frames.

In order to continue expanding the context, we derived
the scheme shown in Figure 3b from Figure 3a, where
two overlapped slices were added at the corners. A total
of 29 frames are covered by Figure 3b. Finally, in order
to test our scheme with a non-overlapped technique, we
removed the overlapped slices from Figure 3b deriving
the scheme shown in Figure 3c. The total number of
frames covered by the last approach is 27, since there is
no gap-frame between different slices.

Based on the proposed schemes, we aim to train a
classifier with a large context more robustly, compared to
the conventional single classifier which involves the same
number of frames. In Figure 3 each classifier is based on
reduced slices of the global context. This fact implies
a decrease in the required amount of training data,
obtaining a global classifier which is better estimated.

In order to combine the output of each classifier, we
used another MLP as a merger. The input of the
MLP merger consists of a concatenation of the posterior
feature vectors from the classifiers to be combined. For
training, the merger uses the central frame labels of the
central classifier as labels.

Table 1 shows the phoneme accuracy of each classifier
for the proposed approach given in Figure 3b. As it was
expected, the central classifier performs the best since
it is assumed that the most prominent information is in
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Figure 2: Average length in frames per phoneme.

(a) 3 overlapped slices. Total context: 19 frames.

(b) 5 overlapped slices. Total context: 29 frames.

(c) 3 non-overlapped slices. Total context: 27 frames.

Figure 3: Proposed context extension technique. Each slice
consists of 9 concatenated MFCCs feature vectors. For the
case of two different overlapped slices, they have in common
4 overlapped MFCCs

the middle of the global context. On the other hand, it
can be observed that the classifiers situated at the left
are slightly better than the classifiers situated at the
right. Thus we can conclude that a phoneme is better
characterized at its beginning rather than at its end.

Table 1: Phoneme Accuracy of each classifier given in
Figure 3b.

Classifier 1-state 3-state

leftmost 55.80 60.04

left-overlapped 65.60 69.05

middle 67.37 70.64

right-overlapped 65.00 68.31

rightmost 54.32 58.91

Table 2 shows the results for the proposed approach
when 1 and 3-state models are employed. In the first
two rows, results for a single classifier with a window
length of 9 and 29 frames are given, as shown in Figure 1.
The following rows show the results of the proposed
approaches when a MLP was used as a merger of different
classifiers. Hence, the next two rows show the results
when the context was further expanded from 9 frames to
19 frames and 29 frames as it is indicated in Figure 3a and
Figure 3b respectively. The last row show the approach
when there is non-overlapped slice which it is illustrated

by Figure 3c.

Table 2: Phoneme Accuracy for the proposed temporal
decomposition.

system total 1-state 3-state

frames

Single classifier 9 67.37 70.64

Single classifier 29 65.82 69.31

3 overlapped slices 19 69.20 71.78

5 overlapped slices 29 70.10 72.89

3 non-overlapped slices 27 69.37 72.39

By comparing the last two rows of Table 2, we can ob-
serve that the overlapped scheme out-performs the non-
overlapped technique. The reason is that by introducing
one classifier in the intersection of two classifiers, overlap-
ping both of them, a better transition between classifiers
can be modeled. Hence additional helpful information
can be extracted, further improving performance. When
extending the proposed approach from three overlapped
slices to five overlapped slices, a further considerable
improvement is achieved. Therefore, we can conclude
that there is still useful information included in a larger
context, which is worth considering.

Finally, comparing the results of the five overlapped
slices with a single classifier covering the same number of
frames (29 frames), an absolute improvement of 4.28%(1-
state) and 3.58%(3-state) is obtained. It is possible to
enhance the recognition accuracy with a bigram language
model. For Setup B with 3-states it increases from
72.89% to 73.42%.

Further analysis of the proposed approach was conducted
on the longest and shortest phoneme. Figure 2 shows
that the longest phoneme is /oy/ with an average
number of 16.9 frames, and the shortest is /dx/ with 2.9
frames. Figure 4 shows the frame accuracy (FA) of both
phonemes when the scheme of 5 overlapped slices was
tested. This figure shows the FA of each single classifier
corresponding to the five different overlapped slices. In
addition, it shows the FA when a MLP has been utilized
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Figure 4: Frame Accuracy of each classifier given in
Figure 3b. In addition, the FA of the combination of all five
classifiers by using an MLP as a merger is also shown.

as a merger of the five classifiers.

As it was expected, for the case of /dx/ the leftmost
and rightmost classifiers have a very low FA compared
to the central classifier. The reason is that frames
situated far away from the center of the global context,
contain very little information relevant to the current
central phoneme. In contrast, for the phoneme /oy/
the leftmost and rightmost classifiers have a considerably
high performance compared to the central classifier.
Finally we can see that, after applying the merger, both
long and short phonemes benefit from the proposed
approach by out-performing the FA of all five classifiers.

Conclusions and future work
In this work we proposed a novel approach of temporal
decomposition for context expansion. We have trained
several classifiers specialized in different slices of the
global context. This method yields more stable phoneme
classifiers in spite of sparse training data, which is clearly
superior to single classifier based methods.

Several temporal decomposition approaches were evalu-
ated, together with different classifier combiners. The
best system obtained consists of a mixture of five over-
lapping classifiers and an MLP classifier as a merger.
This approach out-performed a single classifier with the
same context length with an absolute improvement of
3.6%. This shows clearly that our approach exploits
contextual information more effectively than hitherto
existing systems.

For comparison with the work described in [14], our
proposed approach can be classified as context modeling
at the feature level. In the same paper, context modeling
at the posterior level (hierarchical approach) was also
introduced. This technique consists of taking a window
of posteriors features, generated at the feature level, as
input to another MLP building a hierarchical system.
In [14] a single MLP was applied at the feature level. A
suggestion for feature work is to introduce our context
extension scheme at the feature level and verify if
our proposed scheme is still fruitful in the hierarchical
framework.
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