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Introduction 
Missing Data Techniques (MDT) increase the noise 
robustness of a speech recogniser by reducing the mismatch 
between the acoustic model and the noisy features, without 
having to model the noise. The first application of MDT to 
Hidden Markov Model (HMM) was formulated in the log 
spectral domain (SMDT [1]). Here, speech is represented by 
the log-energy outputs of a filter bank and modelled by a 
mixture of Gaussians with diagonal covariance. However, 
the filter bank outputs are highly correlated and poorly 
modelled with a diagonal covariance Gaussians. Cepstral 
MDT reduces the correlations with the Discrete Cosine 
Transformation (DCT) on the spectral features. There are 
two reasons which cause a CMDT [2] recogniser to be slow. 
First of all, for a context dependent HMM-based speech 
recogniser with Gaussian mixture output probability density 
functions, at every time frame, significant computational 
load is in matching the incoming observation with each 
Gaussian mixture. Furthermore, for CMDT, evaluating a 
mixture gets more expensive because the Maximum 
Likelihood Estimation (MLE) over a mixture implies solving 
a Non-negative Least Square (NNLSQ) problem. The latter 
reason could be alleviated by introducing the PROSPECT 
features [3], while the former can be surmounted by using 
Gaussian selection. However, since the MDT modifies the 
acoustic model, existing Gaussian selection methods need to 
be revisited. Approaches such as [5] and [8] can be adapted 
to our present needs. Besides Gaussian selection, subspace 
clustering [6] was also reported as an efficient method to 
save both computation and model storage and is also 
considered in this paper. 

This paper is organized as follows. The basics of Gaussian 
selection are first shortly explained. MDT and PROSPECT 
features are restated followed by the descriptions how to 
expand Gaussian selection to the PROSPECT domain. 
Experiments are carried out on the car data of the 
AURORA-4 database [11] and of the SpeechDat CAR [12] 
Flemish database. 

Gaussian Selection Overview 
The purpose of Gaussian selection is to remove unlikely 
mixtures during the decoding phase of speech recognition. In 
[8], the author gave an L-Cluster-M-Best scheme. Each 
Gaussian is assigned to one of L clusters. Each cluster is in 
turn represented by a newly created Gaussian. During 
decoding, if the cluster Gaussian matches the incoming 
observation well, its member Gaussians are further 
calculated. Otherwise, if the cluster Gaussian is far away 
from the observation, its members can be coarsely evaluated 
by assigning the matching score of the cluster Gaussian to 

every member. The term “well” here is translated as “to 
appear in the M-Best list of all cluster Gaussian likelihoods”. 
Unlike [8], in [5], the author gave a neighbourhood structure. 
After all Gaussians are clustered as code words or cluster 
Gaussians, neighbourhoods are created surrounding the 
cluster Gaussians. The neighbourhoods are overlapping sets, 
i.e. each Gaussian is assigned to one or more 
neighbourhoods. In the decoding phase, only the best 
neighbourhood is selected and its members are calculated 
exactly, while the others are only coarsely evaluated. 

 In subspace clustering [6], computational and memory 
savings can be achieved by dividing the whole feature space 
into several small streams that can each be modelled by a 
smaller number of Gaussians. However, in MDT, missing 
data needs to be imputed based on the stream’s reliable data, 
which leads to an unallowable accuracy loss. 

Missing Data Techniques with the 
PROSPECT Features 
In SMDT [1], when the speech signal is contaminated by 
additive noise, a spectral mask indicates at each time frame 
which spectral components are defined as missing or 
unreliable (dominated by noise) and which are reliable 
(dominated by speech). Hence, a D-dimensional vector of 
spectral observations can be split into an unreliable part su 
and a reliable part sr:  

]''[' ru sss      (1) 

Data imputation uses the reliable part as evidence to estimate 
the missing part su using the acoustic models of the current 
decoder speech hypothesis. Thanks to the imputation, the 
acoustic model can be evaluated on complete spectral data. 
Data imputation is carried out in the form of Gaussian-wise 
MLE, where the cost function is 

)()'( sss ss 1     (2) 

μs and s are the spectral mean and diagonal covariance of 
the mixture respectively. s contains sr to be imputed in order 
to minimize (2) given the constraint su yu, where  yu is the 
noisy observation of the unreliable component. 

In CMDT [2], the DCT matrix C is applied to the log 
spectral features and thereby applied to the cepstral 
covariance c. Equation (2) is changed to  

)(')'()(')'( scsscs xyCCxysCCs 11 (3) 

where x is the non-negative difference between the observed 
noisy speech y and the clean speech to be imputed, s. 
Minimizing (3) subject to x  0 does not have an analytic 
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solution and requires iteration due to the non-diagonal 
precision matrix C’ c

-1C. 

PROSPECT features aim to reduce computation in cepstral 
MDT by working with a linear transforms that can be 
factorized with matrices of small size. Details and 
motivation can be found in [3]. From a statistical 
perspective, it implies modelling spectral correlations in the 
lower order cepstrum only. Let CK be the K by D DCT 
matrix. The transformation applied to the log-spectrum s is 
then: 

d
c

Bss
P
C

p K    (4) 

K cepstral components are kept in c, while d is the spectral 
residual after removing the spectrum that is captured by c: 

d=s- CK’c hence P =I- CK’ CK. Vector p of dimension K+D 
is referred to as the PROSPECT feature vector.  

The mixture-wise likelihood is formulated as: 
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and the projection part is 
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 is the projection stream weight and is set to 0.5. ck, ck and 
ck denote the diagonal covariance, mean and observation of 
k-th component of the cepstral part of the PROSPECT 
feature; dj, dj and dj denote the j-th component of the 
projection part. The log likelihood to be evaluated in the 
PROSPECT MDT is: 

)(]''[)'( sPPCCs 11
dc   (8) 

Gaussian Clustering in the PROSPECT 
Domain 
The K-means algorithm is adopted for clustering. Gaussian 
selection and subspace clustering share the same clustering 
method. The two essentials of K-means are the distance 
metric and the estimation of cluster Gaussians. 

Gaussian Distance Metric 
The symmetric Kullback-Leibler Divergence (KLD) is used 
to measure the distance between two N-dimensional 
Gaussian mixtures with diagonal covariance matrix [7]. 
        f)||KLD(gg)||KLD(fg)d(f,  
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However, some care must be taken: F formulated by 
equation (5) does not integrate to unity because of the stream 
exponent , which compensates for unmodelled correlations 
in the PROSPECT features. Hence it does not fall in the 
concept of the KLD in information theory. Function F can 
be decomposed into product of a coefficient H and a strict 
PDF f, where  
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H is a mixture-dependent coefficient but will be 
approximated by a constant in the sequel. When substituting 
the means and diagonal covariance components in the strict 
PDF shown in Equation (11) into Equation (9), the 
divergence becomes: 

DAddcc )1()g,d(f)g,d(f   (12) 

(which is symmetrical and strictly positive for f  g) where 
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fck and fck are the k-th component of the mean and diagonal 
covariance of the cepstral part of f; gck and gck are the 
counterparts of g. fdj and fdj are j-th component of the mean 
and diagonal covariance of the projection part of f; gdj and 

gdj are the counterparts of g. We have observed that 
omitting A from equation (12) leads to a better balancing of 
cluster sizes and a better computation/accuracy trade off. 
When computing the distance between a Gaussian (smaller 
variance) and a cluster candidate (larger variance) we 
observe from (15) that due to A, a cluster with a large 
variance in the projection part may be disfavoured. Hence 
the metric becomes:  

)g,d(f)g,d(f ddcc     (16) 
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With the work of [4], both the output probability and 
symmetric KLD can be written in forms of static, velocity 
and acceleration streams. Each stream can be divided into a 
cepstral and a projection part. Consequently, there are six 
streams with stream weights i (0.5 or 1). In fact, the 
expression for the distance metric combining information 
from S different streams with diagonal covariance and with 
different stream weights is: 

S

i
iii

1
)g,d(f    (17) 

Parameter Estimation of Cluster Gaussians 
Like in [7], the cluster centre is chosen by unweighted 
matching of first and second order moments with the 
clustered Gaussians. Hence, its mean and diagonal 
covariance are given by: 
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where W is the number of Gaussians belonging to the 
specific cluster. ki and ki are the i-th component of mean 
and diagonal covariance of k-th member Gaussian. 

Finally, the PROSPECT means in (13) and (14) are 
transformed to the spectral domain by multiplying it with the 
pseudo-inverse of B (as defined in Equation (4)) such that 
cluster Gaussians can be evaluated on spectral feature vector 
using the cost function (8). 

Experiments 
Both the L-Cluster-M-Best and the neighbourhood methods 
of Gaussian selection for PROSPECT MDT were 
implemented and tested in our experiments, as well as the 
subspace implementation. The experiments are carried out 
on AURORA-4 [11] in-car database which is a large 
vocabulary continuous speech recognition task. Since the 
noise in AURORA-4 is artificially added, we also evaluate 
on the SpeechDat [12] in-car Flemish database, to which we 
added SNR classification. 

Experiments on AURORA-4 
AURORA-4 is a 5k-word dictation task. The PROSPECT 
acoustic model set is trained using single pass retraining 
from a  21037 tied mixture model set, where K=4 and D=22 
using the clean training set. A VQ mask [10] is computed 
from the noisy signal. Both the L-Cluster-M-Best and the 
neighbourhood Gaussian selection are evaluated. The 
percentage of Gaussians calculated of the former method is 
controlled by the M to L ratio, while that of the latter is 
controlled by the average neighbourhood size to mixture 
number ratio which is in turn controlled by a threshold . A 
mixture i will be regarded as a member of the 
neighbourhood of cluster Gaussian j if:  

 jji Eclustermixture .),(Divergence  

where divergence is defined by (16) and j is the average 
quantization error of cluster j.  is initiated with 1 and is 
increased to fulfill the predefined average neighborhood 

size. It is observed in AURORA-4 that the performance does 
not get much better as the number of clusters L is increased. 
We found that L = 110 is a reasonable value. In our 
experiments, replacing the score of the unselected member 
Gaussians with a very small value gives better results than 
assigning their scores with those of their cluster Gaussians in 
both L-Cluster-M-Best and neighborhood implementation as 
[8] did. 

In Figure 1, the percentages of Gaussians to be calculated 
give an indication of the computational efficiency of 
decoding. For L-Cluster-M-Best, it is calculated by: 
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where T is the number of frames, wk is the size of cluster k 
and G is the total number of Gaussians. Curve (a) shows the 
tradeoff between Word Error Rate (WER) and the 
percentage of Gaussians calculated of 110-Cluster-M-Best 
Gaussian selection method, where M=(11, 22, … ,99, 110) 
yielding the ten data points along the curve. Curve (b) shows 
that of the neighborhood method. The average ratio of 
neighborhood size to the number of mixtures equals 10%, 
20%… 90%. The L-Cluster-M-Best method selects several 
clusters around the observation, while the neighbourhood 
method selects Gaussians in a wide area, but not centred 
around the observation. Therefore, the former is more 
effective method, as is observed from our experiments. 
Curves (a) and (b) reach the same point when 100% of the 
Gaussians are calculated. It also shows that this point is 
above most points along curve (a), a phenomenon also 
observed in [6]. Curve (c) is the performance of subspace 
clustering with 4096, 6144 and 8192 clusters in each of the 
static and dynamic streams.  
In order to achieve an efficient computation without losing 
much accuracy (or even gaining accuracy), we choose L-
Cluster-M-Best in further experiments on MIDAS Flemish 
in-car database as the Gaussian selection method.  

 
Experiments on the SpeechDat Car Flemish Database 
The car data in SpeechDat Flemish database includes 
utterances recorded in different driving conditions. It 
consists of four channels from close, medium and far field 
microphones. The Flemish PROSEPECT acoutic model set 
is again trained using single pass retaining from triphone 
HMM with 28917 tied Gaussians. . The training data are 
taken from the read speech component of the Flemish CGN 
database [ref]. The L-Cluster-M-Best Gaussian selection is 
tested, where L=170, M=34. Figure 2 shows the accuracy 

 
Figure 1: WER with percentage of Gaussian calculated 
of L-Cluster-M-Best, neighbourhood Gaussian selection 
and subspace clustering in AURORA-4 experiments. 
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results on the recognition task with 637 active words or 
commands. The small gain in accuracy due to Gaussian 
selection is also observed here. 

 
Figure 3 compares the CPU time per frame between 170-
Cluster-34-Best Gaussian selection and the baseline 
recogniser without removing Gaussians from evaluation on 
the isolated words task. Gaussian selection saves 60% CPU 
time. Both the CPU time of the baseline system and 
Gaussian selection are increased as the SNR is decreased, 
which is attributed to the increase in number of unreliable 
time-frequency cells, making the NNLSQ more expensive to 
solve. Furthermore, as more time-frequency cells are 
unreliable and the noisy observations are constraining the 
NNLSQ problem less (s  y) at lower SNR, the larger 
clusters tend to end up more in the M-best list, resulting in 
more Gaussians to be evaluated.  

 

Conclusions 
We have implemented the L-Cluster-M-Best and neighbor-
hood Gaussian selection methods to speed up the 
PROSPECT MDT recogniser by excluding a large fraction 
of mixtures from evaluation. The clustering is performed in 
the PROSPECT domain and the covariance matrices of both 
cluster Gaussians and member Gaussians are assumed to be 
diagonal. The weighted KLD is shown as a valid distance 
metric in K-means clustering. As the number of cluster gets 
larger, the experiments do not show much better results. 
With the same computational load, the L-Cluster-M-Best 
method performs better than the neighborhood method.  

Subspace clustering cannot give results as good as Gaussian 
selection. The Gaussian selection is worthwhile because it 
brings great efficiency with tiny performance degradation as 
a trade off. 
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Figure 3: CPU time per frame of 170-Cluster-34-Best 
Gaussian selection and the baseline recogniser without 
Gaussian removal on isolated word grammar of 
SpeechDat Flemish in-car data. 

Figure 2: WER per SNR of 170-Cluster-34-Best 
Gaussian selection and the baseline recogniser 
without Gaussian removal on isolated words grammar 
of MIDAS Flemish in-car data  
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