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Introduction
Due to an increase in heavy traffic and the construction
of rail roads near or in residential areas, models for the
prediction of vibrations in soil become more and more
important. We are presenting a 3-dimensional BEM-
model of a tunnel going through a horizontally layered
orthotropic material. The goal of the simulation is to
calculate the deformations at the tunnel walls, the tunnel
base and at the soil surface caused by a load at the tunnel
base.

Until now, there is no known analytical form of the
fundamental solution for this kind of problems. Since,
however, it is needed for a BEM-approach, a numerical
approximation for this function has to be calculated.
This will be done in the Fourier domain, which has two
advantages: the original 3-dimensional problem can be
decoupled into smaller, independent 2-dimensional prob-
lems and there is no need to integrate over a singularity
of the fundamental solution, because it vanishes in the
Fourier domain.

The Fourier back transform and the solution of the
boundary integral equation (BIE) are exchanged, because
the special form of the fundamental solution allows an
analytical solution of some of the integrals occuring in
the BIE. The back-transform from the Fourier domain is
then done numerically.

Fundamental Solution
The soil is modelled as a horizontally layered half-space.
Each layer has its own set of parameters: the Young’s
moduli Ei, the shear moduli Gij , the Poisson ratios νij
(i, j ∈ {x, y, z}), density ρ and thickness d. Underneath
the last regular layer an additional half-space layer is
added with appropriate boundary conditions to prevent
unwanted (”unphysical”) reflections.

In a first step the deformations and stresses for the
layered half-space without the tunnel, caused by loads
in different depths and directions, will be calculated
(here only a sketch is given - for more details refer to
[1, 2]). Based on these results an approximation for the
fundamental solution can be constructed, which, in turn,
will be used to set up and finally solve the BIE.

The problem of wave propagation without body forces
inside a single (homogeneous) layer, using the Fourier-
transform and Hooke’s law σ = F−1Du, where σ are
the stresses, u the deformations, F is the stiffness matrix
for an orthotropic media and D is a matrix representing

the differentiation operators, can be stated as:

Ku = 0 , (1)

where K is a symmetric 3 × 3 matrix depending on the
material parameters, the angular frequency ω and the
angular wavenumbers kx, ky and kz (for more details see
[1]).

The system of linear equations (1) has nontrivial solu-
tions iff K is singular. The determinant of K as a
function of kz is a polynomial of degree 6, therefore,
for every pair (kx, ky), every layer and every frequency,
we have at most 6 different values k[j]

z (j = 1, ..., 6) for
which the determinant is 0, thus rendering K singular.
In the following we will call the k[j]

z franz-values (FRanz
Ain’t a N ormal kZ -value) and the corresponding vectors
Ψ[j](kx, ky) ∈ kerK(kx, ky, k

[j]
z ) franz-vectors of the

system.

The solution to (1) for one k[j]
z then is

û[j](kx, ky) = ajΨ[j](kx, ky) , (2)

where aj ∈ C. This solution can be expanded to the
entire kz-domain, yielding

û[j](kx, ky, kz) = ajΨ[j](kx, ky)δ(kz − k[j]
z ) , (3)

where δ denotes the Dirac-Delta functional. The reason
for this is that the solution to equation (1) is 0 if kz 6= k

[j]
z .

By adding the six û[j], we get the general solution to (1),
which after a Fourier back transform with respect to kz
is:

û(kx, ky, z) =
1

2π

6∑
j=1

ajΨ[j](kx, ky)eik[j]
z z . (4)

Since σ̂ = F−1D̂û (the transformed version of Hooke’s
law), the stresses can be written as

σ̂(kx, ky, z) =
1

2π

6∑
j=1

ajF
−1D̂[j]Ψ[j]eik[j]

z z, (5)

where D̂[j] is a matrix representing the derivative oper-
ators in the Fourier domain.

The aj in (4) and (5) have to be set such that û and σ̂
satisfy the prescribed conditions at the layer boundaries.
For the last layer (the non-reflecting half space) the
weights need to be set to satisfy the Sommerfeld radiation
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condition, i.e. such that û → 0 (and consequently
σ̂ → 0) as z → +∞.

Since we set the body forces to zero, we can only apply
forces at the layer boundaries. For forces applied at
a depth zp inside the layer (which is necessary for the
setup of the BIE), it has to be split into two parts, thus
introducing two virtual layers.

Here one could perform a Fourier back transform in the
y-direction, set up and solve the BIE in the (kx, y, z)-
domain and still have the advantages of a 2.5D-problem
[2]. We, however, stay in the (kx, ky, z)-domain.

Boundary Integral Formulation
In order to use the boundary element method (BEM),
it is in general necessary to have an explicit form of
the fundamental solution. Looking at the problem from
the engineering point of view (cf. [3]), the fundamental
solution can be interpreted as the reaction of the system
at an evaluation point x to an infinite point load applied
at the load point ξ.

With this in mind, it is clear that the algorithm described
above can be used to construct an approximation for this
function. In order to use this approach, we have to apply
a load in the depth of every load point (i.e. everywhere,
where we want to know the deformations), and evaluate
the deformations and stresses at every evaluation point
(i.e. on the tunnel-boundary, over which we will later
integrate).

Our mesh consists of straight lines (see Figure 1) with
one load and one evaluation point per element, which
coincide at the midpoint of the element. That means,
that if we want to know the deformations and stresses on
the tunnel walls and the tunnel bottom, we have to add
an addional layer for the midpoint of every BEM-element
(if a symmetric mesh is used, only half the number of
layers is necessary).

As the main boundary integral equation the body-force
free Somigliana’s identity (cf. [3]) is used, which reads
(in simplified Einstein notation):

ui(ξ)=
∫

Γ

u∗ij(ξ,x)tj(x)dx−
∫

Γ

t∗ij(ξ,x)uj(x)dx , (6)

where Γ is the tunnel boundary, u∗ij are the fundamental
deformations in the x-, y-, and z-directions (j = 1, 2, 3)
at the evaluation point x = (x, y, z) caused by a load
applied at ξ = (ξ, η, ζ) in the x-, y-, and z-directions
(i = 1, 2, 3). Note that u∗ij(ξ,x) is shift invariant in x-
und y- direction, i.e. u∗ij(ξ,x) = u∗ij(x−ξ, y−η, ζ; 0, 0, z).
The fundamental stresses t∗ij are defined as follows:

t∗ij(ξ,x) :=
3∑
k

σ∗ijk(ξ,x)nk(x) , (7)

where σ∗ijk(ξ,x) is the jkth-component of the stress
tensor at x caused by a unit load in the i-direction
at the point ξ, and nk(x) is the kth component of the

normal vector pointing outwards at x, thus in our model
n = (0,− sin(α),− cos(α))T (cf. Figure 1).

As a boundary condition, we set tj(x) = 0 (j = 1, 2) at
every element and t3(x) = 0 at every element, except for
those where the load is applied on the tunnel bottom (cf.
Figure 1).

As was shown in [2] it is possible to consider the BIE
seperately for every kx, thus reducing the integrations
in equation (6) to simple line integrals over the tunnels
cross section Γ0 in the (y, z)-plane:

0 = Ui(kx, η, ζ) −

−
∫

Γ0

T ∗ij(kx, η − y, ζ; 0, 0, z)Uj(kx, y, z)d(y, z) +

+
∫

Γ0

U∗ij(kx, η − y, ζ; 0, 0, z)Tj(kx, y, z)d(y, z) , (8)

Figure 1: Scheme of the tunnel cross section.

Evaluating the Integrals
Because of the nature of the fundamental solution, the
integrals in equation (6) become singular as ξ → x,
which is, from a numerical point of view, undesirable. In
addition to that, the σij are non-decaying as ky → ±∞ if
load and evaluation point have the same depth, which is
a serious problem for a numerical Fourier back transform
(cf. equations (9) and (11)).

These two problems can be avoided by doing all compu-
tations in the Fourier domain (i.e. using the fundamental
solution in the form that was discussed above and in [1]),
but this domain, however, is unbounded. Consequently,
this procedure only is advantagous if the occuring in-
tegrands tend to 0 fast enough as ky → ±∞, so that
a numerical integration over an unbounded domain is
still feasible. That this really is the case can be seen in
Figure 2.

First we take a look at the second integral in equation (8):∫
Γ0
U∗ij Tj d(y, z). Since the load is only applied at

the tunnel base and in z-direction, the integrand can
be non-zero only for j = 3 and on horizontal elements
in a constant depth zp. After splitting the integral
over Γ0 into a sum of integrals over the elements of the
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discretisation Γp, we set the origin (in y-direction) of the
local coordinate system to the midpoint of the element
yp. Because we are only looking at horizontal elements,
the integration over Γp is reduced to c

∫ y0
−y0 U

∗
i3dy , where

c is the strength of the applied force and 2y0 is the length
of the element.

Using the Fourier transform and exchanging the order of
integration we have∫ y0p

−y0p

U∗i3(ζ; y + yp − η, zp) dy =∫ ∞
−∞

e−iky(η−yp)Û∗i3(ζ; ky, zp)
∫ y0p

−y0p

e−ikyydydky =∫ ∞
−∞

e−iky(η−yp)Û∗i3(ζ; ky, zp)sink(ky, y0p)dky , (9)

where sink(ky, y0) := 2 sin(kyy0)
ky

.

Figure 2: Absolute value of the integrand in equation (9)
for (kx, ky) ∈ [−2, 2]× [−2, 2] for our test problem. The load
and evaluation depths are the same.

Even in the case where the load and the evaluation
elements are the same, the deformations Ui3(ky) tend
to 0 as ky → ±∞ and the sink-function adds additional
damping. Thus, the integrand decays fast enough, as can
be seen in Figure (2) and therefore the above integral
can be calculated using numerical methods.

For the first integral in equation (8)
∫

Γ0
T ∗ij Uj d(y, z)

things are not as simple, because the elements of the
discretisation Γp that have to be considered here can
have arbitrary orientation and we propose the following
approach: we use constant shape functions for the
deformations, so the Uj can be taken outside the inte-
gral. Since the elements are straight lines, they can be
represented by y = gpz + yp, z ∈ [−z0, z0], where gp
is the slope of the element and 2z0 is the extension of
the element in z-direction. Performing the Fourier back
transform and exchanging the order of integration we get∫

Γp

T ∗ij(ζ; y − η, z)d(y, z) =

1
2π

∫ ∞
−∞

eiky(yp−η)

∫ z0

−z0
T̂ ∗ij(ζ; ky, z)eikygpzdzdky . (10)

The next step is to use the knowledge about the compo-
sition of the Tij (cf. equations (4) and (5)) which (again)
allows us to do the integration in z-direction analytically,
finally giving the following integrand:

eiky(yp−η)
6∑
s=1

a
[s]
i (ζ)Φ[s]

j (l, α)sink(k[s]
z + kygp, z0) , (11)

where Φ[s]
j (l, α) are the properly scaled stresses calcu-

lated from the the franz-vectors and equations (5) and
(7). Again, the sink-function provides damping and leads
to fast enough a decay for numerical integration.

The advantages over a model that performs the Fourier
back transform at an earlier stage are that in the model
presented here we can do the integration in z-direction
analytically and, owing to the damping by the sink-
function, the numerical integrations over ky are more
accurate.

Example
For a test it was assumed that the grid used is fine enough
so that U∗ij and T ∗ij can be set constant on each element.

We assumed the tunnels cross-section to be a circle with
radius 3 m and the centre at 9 m below surface. 1,5 m
below the centre the circle is cut by a horizontal line,
thus giving the tunnel a horizontal floor. This cross-
section was discretised with 101 elements with lengths
from 0.10 m to 0.18 m.

The soil consist of three layers of different thickness,
additionally a half space layer was added to prevent
unwanted reflections. For the parameters see Table 1.

A load of c = 0, 25 N was applied at x = 0 and y = 0
at the tunnel bottom pointing in the z-direction. All
calculations were made for a frequency of 40 Hz.

Layer
Parameter

Ex =Ez Gx =Gz νx =νz ρ d

1 9.0E7+

3.6E6i

3.4E7+

1.4E6i

0.330 1500 7.0

2 3.1E8+

1.2E7i

1.2E8+

4.7E6i

0.314 1750 2.0

3 9.0E7+

3.6E6i

3.4E7+

1.3E6i

0.330 1500 5.0

HS 3.6E8+

1.4E7i

1.4E8+

5.4E6i

0.315 2000 ∞

Table 1: Material parameters for the test problem.

Results
Figure 3 shows the absolute value of the deformations in
z-direction at the tunnel walls, the tunnel bottom and at
the surface.

Outlook
For now, our main focus lies on improving the integration
over the unbounded domain. From experience we know
that the integrands in (9) and (11) are rather smooth
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Figure 3: Absolute value of the deformations of the tunnel
walls and the surface in z-direction at 40Hz.

outside a small interval around (kx, ky) = (0, 0). There-
fore it seems feasible to use different (non-equidistant)
grids; e.g. a fine grid for (kx, ky) ∈ [−3, 3] × [−3, 3]
and some wider grid outside this domain. In addition to
that, because of the smoothness of the integrands outside
[−3, 3]× [−3, 3], we suggest to approximate them with a
single exponential function.
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