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Introduction

The existense and relevance of Acoustic Streaming (AS)
for the mechanical processes in hearing has remained
controversal. Main contributions to this topic came from
the Bell Telephone Laboratories in 1972 [1], the work of
Tonndorf and later from Lighthill [2]. Today a general
assumption is the relevance of AS to be limited to very
high sound pressure levels larger than 120 dB (SPL).
Because of the unaccessability of the organ of Corti in
the inner ear an experimental proof was not possible up
to now, except the pioneering work of G. v. Békésy who
saw eddies in the lymph of the cochlea with indeed high
stimulating pressure levels (140 dB(SPL)). Therefore the
actual opinion of AS in the ear ranges from it’s irrelevance
to it’s permanent presence (pers.comm. Ch.Steele, 2008).
AS is a physical phenomenon which was first proposed
by Lord Rayleigh [3]. AS denotes sound induced flow
(streaming) in fluids, e.g. air or water. While the
mathematical foundation of the opposite effect, namely
flow induced sound, was given by A. D. Pierce in the
mid 1980s the development of the mathematical theory
of AS is more vigorously and connected with the work
of Lighthill [4]. Later it was extended by a ”boundary
drive” mechanism [5]. Köster [6] applies these theories to
micro-fluidic mixing devices and provides a software for
numerical evaluations, but the fluid-structure interaction
was not yet implied. Rayleigh’s law of streaming is
applicable to two kinds of streaming motions

1. AS, resulting when an acoustic standing wave in
a fluid adjacent to a solid wall suffers dissipation
within the resulting boundary layer and

2. a related kind of streaming which results from the
vibrations of a solid body adjacent to fluid at rest.

Because the sound dissipation and generation and the
wave propagation in the cochlea of the inner ear of
humans and animals are unsolved problems up to now we
develope a mathematical theory which implements the
fluid-structure interaction of the complex biomechanical
system for a numerical evaluation.

Methods

In this section a technique is proposed to simulate
acoustic streaming in a fluid-structure-coupled system
like the cochlea. The system of equations that describes
the fluid flow consists of the conversation relations of
mass and momentum with the shear viscosity µ,

bulk viscosity µB and density of the fluid ρ [5]

−∇p + µ∇2v + (µB +
µ

3
)∇∇ · v = ρ

(∂v

∂t
+ (v · ∇)v

)

(1)

∂ρ

∂t
+ ∇ · (ρv) = 0 (2)

and the constitutive relation ρ = ρ(p). At the boundaries
the no-slip condition is assumed. Since the acoustic
streaming problem is a nonlinear effect the usual per-
turbation expansion of the unknowns v, p and ρ is
performed:

v = 0 + v(1) + v(2) + O(ǫ3)

p = p(0) + p(1) + p(2) + O(ǫ3)

ρ = ρ(0) + ρ(1) + ρ(2) + O(ǫ3)

(3)

By combining equations (1), (2) and (3) and gathering
only the linear terms the equations of mass and momen-
tum become

−∇p(1) + µ∇2v(1) + (µB +
µ

3
)∇∇ · v(1) = ρ(0) ∂v(1)

∂t
(4)

1

c2
0ρ

(0)

∂p(1)

∂t
+ ∇ · v(1) = 0 (5)

where p(1) = c2
0ρ

(1) is assumed. The first order system is
the standard linear system which describes the damped
propagation of sound in a viscous fluid. The boundary
condition that describes the coupling between the fluid
and the structure is given by

v =
∂u

∂t
(6)

where u denotes the displacement of the structure.
Applying a finite element discretisation of the acoustic
system (4) and (5) with simultaneous consideration of
the coupling condition (6) yields

A ˙̃v + Bṽ + Dp̃ + E ˙̃u = 0

F ˙̃p + Gp̃ + Hṽ + I ˙̃u = 0
(7)

The discrete structural problem is given by [7]

M ¨̃u + C ˙̃u + Kũ + Qp̃ = f (8)

By combining (7) and (8) the linear fluid-structure
coupled acoustic system becomes
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Equation (8) contains the equation of motion of the
elastic-embedded beam which is captured by space de-
pendent finite elements of the stiffness matrix K easily.

The solutions of the linear velocity, pressure and displace-
ment field are used for the time-averaged second order
system of equations of mass and momentum, given by

∇p(2) − µ∇2v(2) − (µB +
µ

3
)∇∇ · v(2) =

−
1

c2
0

〈p(1) ∂v(1)

∂t
〉 − ρ(0)〈(v(1) · ∇)v(1)〉

(10)

ρ(0)∇ · v(2) = −
1

c2
0

∇ · 〈p(1)v(1)〉 (11)

where 〈·〉 denotes the temporal average of a time-de-
pendent function. Note, that the second harmonic terms
are also time-averaged, since the time-independent part
of the fluid-motion is of interest. Finally the acoustic
streaming field can be derived by an appropriate finite
element discretisation of the second order system (10).

Figure 1 shows the 2D model of the cochlea including
the fluid-structure coupling which will be examined first.
The shaded area marks the outer boundary (bone)
which encloses the lymph. The upper left vertical line
represents the oval window and the lower left vertical
line the round window. The horizontal line marks the
basilar membrane (BM) which carries the sensory cells
responsible for acoustic-neural transduction (inner and
outer hair cells) necessary for hearing sensations but
neglected in a preliminary passive model with the BM
represented by an elastic-embedded beam.

Figure 1: 2D Finite Element model of the cochlea

Figure 2 shows the push-pull displacement of the oval
window and round window and the BM [1]. The
extremely exaggerated displacements sketches the acous-
tical wave on the BM. Especially with higher frequencies
(f > 2000Hz) the push-pull mechanism of the oval
and round window vanishes because of the lymph’s
compressibility. This might lead to in-phase movements
of the windows.

The calculation of the primary acoustic field (Equations
4, 5) is time consuming especially without parallel
processing. The use of the Boundary Element Method
(BEM) brought about a relevant gain but could be
implemented by Köster only for 2D problems up to now.
The effective solution of the coupled system (9) is under
development.

Figure 2: Sketch of exaggerated displacements of cochlear
structures: oval window, round window and basilar membrane
(see [1], L = 35 mm)

Results

As a first step the acoustic wave propagation in a two-
dimensional rectangle (32 mm x 2 mm) was computed
with a vibrating boundary using the Finite Element
Software ALBERTA. First numerical results of a time
domain formulation indicated compressional waves in the
fluid (lymph) propagating with the small-signal sound
speed of water

c0 = 1484
m

s
(12)

In this case a Crank-Nicolson discretisation scheme in
time and Lagrangian elements in space were used. Fur-
ther calculations will be performed with the fully coupled
system calculating the variables (pressure and displace-
ments) of the first and second order system in two and
three dimensions.
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