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1. Introduction / The Basic Ideas 
In room and city acoustics respectively noise immission 
prognosis, ray or beam tracing methods (RT/BT) are well 
approved (where a version of RT is the sound particle me-
thod with its detector technique and its statistical evaluation 
[1] and BT is an efficient straight forward implementation of 
the mirror image source method MISM). But these methods 
naturally neglect diffraction.  
The aim is an efficient handling of arbitrary diffraction and 
reflection orders. A diffraction module is desired as an ap-
proximation for short, but not very short wavelengths. 
As a high frequency approach for ray diffraction the UTD 
exists [2] and was recently utilized by Tsingos et. al. within 
BT [3]. Svensson developed a secondary edge source model 
valid even for low frequencies [4] (also only for hard 
wedges). But both methods work recursively for higher or-
der diffraction, hence the computation time explodes.  
So, basic hypotheses for an introduction of diffraction are: 
- diffraction is mainly an edge effect, 
- energetic superposition, hence RT can be used.  
But there another problem arises: with RT, rays never hit 
edges exactly, they pass only near by.  
Basic ideas for solving both problems are: 
- not all combinations and paths of diffracted/ reflected rays 
or particles are important, only those where particles pass 
close to edges,  
- the bending effect on a sound particle – the diffraction 
probability- should be the stronger the closer the by-pass-
distance. This idea is inspired by Heisenbergs Uncertainty-
Relation (UR): the by-pass-distance as an ‘uncertainty’. The-
reby, the diffraction pattern is the spatial Fourier transform 
of the transfer function of a slit. Already in 1986, the author 
made a successful approach for a sound particle diffraction 
based on the UR [5] (later affirmed by Freniere et al. who 
utilized the UR in another way successfully in optical RT 
[6]). In 2006 this approach has been generalized, embedded 
in a full 2D ray tracing program, now also for finite dis-
tances [7]. The results have been compared earlier with the 
Maekawa’s ‘classical’ ‘detour-model’ [8], later with Svens-
son’s model for the screen. (The impulse responses were 
Fourier transformed and the transfer functions octave band 
averaged.) Reference cases were the semi-infinite screen as a 
‘must’ and the slit (two edges) as self-consistency-test. 
 
The basic idea for solving the ‘explosion problem’ is a re-
unification of ‘similarly running’ rays. This is only possible 
if rays are spatially extended, i.e. rather beams, in order to 
exploit their overlap, to interpolate and to re-unify them. For 
this purpose, Quantized Pyramidal Beam Tracing (QPBT) 
was developed in 1996 [9].  This chance is the reason, why 
now beam instead of ray diffraction is preferred.  
A pre-condition for an effective pyramidal beam tracing is a 
subdivision of the room into convex sub-rooms. Diffraction 
events at ‘inner edges’ may be effectively detected on the 
transparent dividing ‘walls’. Furthermore, RT is accelerated 
considerably. Fig.1 illustrates this vision. 

 
 
 
 
 
 
 
 
Fig. 1: Multiple diffractions in a (2D) room which is subdivided into convex 
sub-rooms: ‘transparent’ dividing walls are dashed; a ray is scattered/ dif-
fracted several times on these ‘walls’ near edges (only one path is drawn) 
 
This short paper reports about some recent results: 1) the 
checking of other by-pass-distance-dependent diffraction 
functions, 2) the fulfilling of the reciprocity principle, 3) an 
integral formulation is utilized and discussed. It assumes the 
reader is familiar with the mentioned models otherwise re-
fers to the paper of last year [7] and the detailed paper in 
ACUSTICA [10]. Nevertheless, some basics and results 
shall be repeated. 

2. The Sound Particle Diffraction Model 
There are two basic concepts of implementation: the ‘Dif-
fraction angle probability density function’ (DAPDF) and  
the ‘Edge Diffraction strength’ (EDS).   
The idea of that DAPDF (with non-split-up particles) 
emerges from the UR. But it is more efficient (and physi-
cally equivalent) to split up the rays into new ones with par-
tial energies according to the DAPDF. (fig 2). 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.2: The sound particle diffraction model: Each moment a particle passes 
an edge of a screen at a distance a (below), it ‘sees’ a slit (above with the 
DAPDF on the right hand side). According to the uncertainty relation a cer-
tain EDS causes the particle to be diffracted according to the DAPDF= 
( )εD . Below on the right some angle windows used to count the diffracted 

particles and to add up their energies to the transmission degrees (acc. eq.5). 
All the shifted DAPDFs of the different rays add up to the screen transmis-
sion function (as e.g. in fig. 5 [7]). 

2.1. The DAPDF 
The DAPDF (see fig.2.) is derived from the Fraunhofer dif-
fraction at a slit 22 /sin vv∝ , where επ ⋅⋅= bv , valid 
for parallel incident and diffracted rays. The DAPDF, aver-

DAPDF=averaged slit function 

counting windows 
screen 

edge 
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aged over a wide frequency band (similar as for ‘white 
light’) is roughly approximated by 
  ( ) ( )2

0 21/ vDvD +=  with ε⋅⋅= bv 2   (1) 
where b is the apparent slit width in wavelengths, ε  is the 
deflection angle and D0 is a normalization factor such that 
the integral over all deflection angles is 1. The D0-factor 
must be computed for each edge by-pass since its value de-
pends on b and the angle limits of the wedge. In the fol-
lowing all distances are expressed in units of wavelengthsλ .  

2.2. The EDS 
To develop a modular model which is applicable also to sev-
eral edges that are passed near-by simultaneously, the ‘Edge 
Diffraction Strength’ (EDS(a)) is introduced such that the 
EDS of several edges may be added up to a total TEDS ,
                  ∑= iEDSTEDS   (2) 
To be used as input for the DAPDF, an ‘effective slit width’ 
is then        TEDSbeff /1= .  (3) 
By self-consistency-considerations (the RT experiment at a 
slit should re-produce the energy distribution of itself) it 
turns out that  ( ) ( )aaEDS ⋅= 6/1    (4) 
So, with only one edge, a by-passing particle would ‘see’ a 
relative slit-width of beff=6a. 

2.3. Method of evaluation 
For a systematic analysis,  2D -RT and -BT was evaluated 
for sources S and receivers R at finite distances rs and rr of 
1,3,10,30,100 λ and 15 angles rϕ (and later also sϕ ) -
84…+84° in steps of 12°, in total 5*5*15=375 combinations  
at the screen (fig.3) as well as at the slit (of width b between 
two edges at –b/2 and +b/2 on the y-axis).  
 
 
Fig.3:  
Geometrical  
definitions  
at the screen 
 
 
For all these parameters, the transmission degree T was de-
termined. T is defined as the intensity with the diffraction of 
an obstacle relative to the intensity in free field where ‘inten-
sity’ in 2D is ‘sound power/width’ instead of ‘power/ sur-
face’. But the proportion of T is the same in 3D. For the slit, 
T equals directly the DAP, the energy portion for a certain 
angle range βΔ relative to the energy incident onto the slit.  
The results were compared with the known reference func-
tions, evaluating the mean, max, min and the standard devia-
tions over all. Curves as in fig. 5 may be plotted. 
With RT, many – typically 10…100 – particles are shot over 
the edge. In the first approach [5], their energies were 
counted in ‘angle windows’ in infinity on the other side to 
compute from that the T of the semi-infinite screen. Now, in 
order to simulate also finite receiver distances, the particles 
are detected utilizing a grid of quadratic particle detectors 
[1,7]. For sound particles the immission formula [1] is valid   
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where the ( ) 1'0 , << nMD β  are the energy fractions of dif-
fracted rays (integrals of the DAPDF) in the angle range βΔ  

of the Mth incident ray and for each of the nth diffracted and 
received ray ‘within an imagined beam’, R is the direct dis-
tance source-receiver, Sd the detector surface for sound par-
ticles and wMn are the inner crossing distances of particles in 
detectors. 

2.4. Results of ray diffraction experiments 
At the first go (without any parameter fitting), the agree-
ments with the reference function (Maekawa) were very 
good for almost all cases, now also for finite distances (stan-
dard deviation in most cases  <1 dB, curves similar as in 
fig.5). In 1986, this happened even for many cases of the slit. 
Now, also the comparison with Svensson’s result yielded 
good results (std.dev. 0.66dB). 

3. From ray to beam diffraction 
To prepare the later implementation of QPBT and to reduce 
the number of energy carriers, now beam diffraction was 
tested. For mirror image sources (as represented by beams), 
there is no stochastic variation and the 1/r² -distance law may 
be applied to compute the immitted intensities at the receiver 
points (in 2D a 1/r-law, rBM is the distance bending point -

receiver):    ( )∑⋅Δ⋅
⋅⋅=

M BM

M
BT r

D
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RT
β

β
π

0

2'             (6)       

( )MD β  is the same as ( )nMD ,' β  in eq. 5 for the Mth incident 
beam which belongs to the Mth relevant incident and dif-
fracted beam (elongated in fig.4). So, for one receiver, only 
one loop over all beams (M=1…M0) is necessary, not a sec-
ondary loop over each time an additional number of second-
ary particles (n=1…n0). So, RT can be equivalently be re-
placed by BT  
being much more 
effective. The valid 
by-pass distance of 
a beam is the middle 
ray’s distance 
within the beam. 
 
Fig. 4: 2D beam diffrac-
tion, specialized for the 
screen (black wedge in 
the middle): Typically 
10…100 beams (‘fans’ in 
2D) (left, pink) arrive 
within the by-pass distance range of 0…7λ (here exaggerated). The direct 
sound passes above (yellow). To reach all receivers, beams are split up into 
each typically 10..100 secondary beams. To the right the diffracted beams: 
the darker the colour the higher the intensity –and this mainly in straight 
forward directions; bottom right: the beams relevant for one specific receiv-
er are drawn elongated. 
 
A mathematical analysis shows that, in order to reach a cer-
tain numerical accuracy, particles require a much, at least 10 
times higher number of detector crossings and computation 
time of than beams do.  

3.1.Results of beam diffraction at a screen 
- The agreements RT /BT were very good (standard devia-
tion of only 0.67dB); 
- The direct comparison between BT and the Maekawa 
screen transmission functions yielded a std.dev. of 0.74dB,  
- the comparison with Svenssons’s exact coherent secondary 
edge source model as analytical reference model  yielded 
only 0.39dB (see fig.5). 
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Fig. 5: Example of a comparison between beam tracing (green) and Svens-
son’s reference method (blue, falling to the left). The transmission degree in 
dB is given as function of the receiver angle, to the left the ‘shadow’ region; 
red curve, rising to the left: deviation* 10 (70 incident * 31 diffracted beams 
within amax=7λ , source and receiver distance: 10λ , source at y=0). 
 
Also, the influence of the inner wedge angle wϕ (fig.3) 
was investigated: For smaller inner angles their influence is 
low, but for the case of 90°, compared with 0°, the differ-
ences in the transmission levels are up to 4dB  (mean differ-
ence are typically 0.4dB). However, in Svensson’s reference 
model, hard flanking walls are assumed whereas in the inter-
action model based on the UR only the position of the edge 
is relevant, not any flanking walls. 

3.2.Parallel beam diffraction at a slit 
For this self-consistency-test, both, source and receiver are 
in infinity, hence, the incident parallel beams carry a fraction 
of energy according the portion of the slit width, the dif-
fracted beams carry energy according their angle width. 
Fig.6 shows the experiment similar as explained in Fig.4,  
drawn by the program with exaggerated beam widths. 
Fig.6: 
 
 
 
 
Only 
the 
beams 
near the 
lower 
edge 
are eva-
luated by reasons of symmetry, the yellow beam in the mid-
dle carry the undiffracted energy (outside certain max by-
pass-distances.) Now the EDSs of the two edges were added 
(Eqs. 2-4). 
 
Fig.7. Transmission  
as a function of dif-
fraction angle (upper 
violet curve) as the 
sum over all 
DAPDFs  =array of 
lower blue curves.  
Green: reference 
function. Example 
for a 10λ wide slit. 
 

The standard deviation for all cases is only 0.75 dB, but 
there are up to 3 dB too high levels at high angles (‘deep in 
the shadow’) compared with the slit function itself (green 
curve). (Without the amax-limitation, even deviations up to 
5dB, with the EDSE much better, see below). This result de-
pends hardly on the number of beams. 

4. From beam diffraction to integration 
Now, to exclude any numerical error due to the finite num-
ber of beams (M0), a comparison with an ‘infinite number’ 
of beams i.e. a (numerical) beam integration (BI) was also 
carried out. With απα dM →=Δ 0/2  and 

( ) ( )( )αβββ dD M →Δ/ (the DAPDF) eq. 6 converges to 

     ( )( )
( ) α
α
αβα

α

d
r

dRT
BM

BI ∫⋅=
max

min

  (7) 

( maxmin/α  are the min and max incident angles, sϕα −=min ). 
The difference between BT and BI for the screen was only 
0.38dB std.dev. The following was obtained also with BI.  

5. Further investigations 
5.1. Attempts of optimizations of the DAPDF  
A somewhat improved approach for the DAPDF (instead of 
eq.1) was used in [5]: 
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This DAPDF2 has a wider top as the former, better ap-
proaching the averaged slit-diffraction function ²/)²(sin uu . 
But, as it turned out astonishingly now:  its use does not 
pay: The std.dev. at the screen became even slightly higher 
than with before (0.9dB). With the slit no improvement. 
   In [6] is proposed a gaussian distribution; but this is incon-
sequent, as the transfer function (and hence its Fourier trans-
form) of a slit is not gaussian.  
 
5.1. Optimization of the EDS 
As it turned out, at least for the slit, the edge diffraction 
strength for wider by-pass-distances is to high. Therefore 
another EDS was tested again [5] with an exponentially de-
creasing strength and a limitation to 7λ :  

( ) 0  else  ,70for   
3

1 <<
+⋅

= a 
ea

aEDSE a
  (4b) 

With this (instead of the EDS of eq.4) at the slit the agree-
ments become much better: max. deviation 1dB, std. dev. 
0.5dB. (With the single screen, they become slightly worse, 
especially at short distances, std. dev. 0.8dB). 

  In [6] is also proposed to evaluate only distance to the 
nearest edge. Then the total EDS should (by self-
consistency) be defined as      ( ) ( )( )2121 ,min4/1, aaaaTEDS ⋅=
   (4c). 
But, the result is much worse than with the EDSE: max. de-
viations were up to 5dB, std.dev. 1.4dB. 
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5.3. Test for reciprocity/oblique incidence 
Do the same diffraction levels result with a permutation of 
source and receiver? This does not follow evidently from the 
application of the UR, resp. eqs. 1-4 or eq. 7. Hence, if the 
reciprocity were fulfilled, this would be an important indica-
tion of the correctness of the model. It turned now out: the 
reciprocity principle is fulfilled (max. dev. 0.49dB, std. dev. 
0.21dB) at least if only rs and rr are interchanged, assuming 
only the total diffraction angle βϕϕ ≈+ rs  were relevant 
regardless of the position of the integration area (the former 
y-axis in fig.3. or a dotted line in fig.1.). So, restricted 
for 0=sϕ . If, however, also sϕ and rϕ are interchanged,  
severe deviations (mean dev. up to -10dB) occurred in cases 
of high negative values of sϕ .The reason is: Equ. 7 is not 
symmetric with respect to an interchange of source and re-
ceiver. Some geometrical transformations lead to the alterna-
tive integral over the by-pass-distance a: 

           ( )( ) ( )
( ) ( ) ( )da

arar
adRT

a
s

BIS ∫ Δ⋅⋅
⋅⋅=

max

0 21 cos
cos

α
ϕβ  (8) 

where r1 and r2 are the radii to source and receiver from the 
bending point, 

minmax ααα −=Δ  and maxα corresponds to amax.  

It has to be checked weather an symmetrization of the for-
mula into BT –an introduction of ( )rϕcos ?- could lead to an 
improvement.   It has also to be acknowledged that the 
model is not made for ‘backward scattering’ ( )90°>β . 

Fortunately, the orientation of the ‘diffracting surface’ 
‘above’ the screen (dashed lines in fig. 1) has only a weak 
influence (at +-45° less than 1dB). This is important for the 
practical implementation of the model in sub-divided rooms. 

5.4. Optimum numerical parameters 
Most important and useful is: a maximum by-pass distance 
of amax= 7λ (see fig.2) may be established; beyond that, di-
rect transmission may be performed (figs. 4+6). In the case 
of the slit (or several edges), amax even must be defined to re-
duce the effect of the EDS (if not the EDSE is used): the 
level deviations to the reference functions were without amax: 
max 3.47dB, std.dev. 0.91dB ; with amax=5 only max 
0.94dB, std.dev. 0.4 dB. The maximum deviations increase 
with minimum by-pass distance, 1λ  is close enough. This 
cannot be improved with more particles. With RT, a decisive 
quantity is the number of incident particles within a close 
by-pass distance amin. That should be maximum 0.1λ .  
With BT, one incident beam onto the range near the edge is 
sufficient, a group of diffraction points within 0… amax may 
then be established. The number of secondary beams should 
be in the order of the number of relevant targets or receivers 
on the other side.   

6. Conclusions and Outlook 
The agreements were in most cases very good – with some 
restrictions as now emerged. Consequently, it seems like 
Heisenberg’s UR may be applied also to acoustics and sound 
may be handled as particles even with diffraction. 

 
The cases of beam diffraction at a slit, but with sources 
and receivers in finite distances, and the double diffracti-
on at a cascade of edges behind each other will still have 
to be evaluated. Experiments are going on. 

In principle, it should not be a problem to extend the pre-
sented model to 3D and to multiple diffractions (if the edge 
= the z-axis is infinite, then ∞→Δz  and there is no reason 
for any diffraction in the z-direction, one correctly gets 

0=Δ zk ). Edge diffraction happens only in the area perpen-
dicular to the edge; it is basically a 2D effect. 

The strong frequency dependence of diffraction (influencing 
the question what are ‘near’ edges /what is the best amax) re-
mains a problem.  In final simulations, each beam should 
carry energies of several octave bands. This concerns also 
the question of the limiting distance between edges for ‘in-
dependent’ subsequent diffractions. This will to be investiga-
ted with the double-diffraction experiments. 

A combination of beam diffraction procedures with QPBT 
seems now possible without explosion of computation time.  
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