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Abstract 
The Fourier components generated by the non-linear 
excitation process are coupled to the acoustic modes of the 
pipe (and to those of the vocal tract). At low amplitudes the 
fundamental determines the frequency of the played note; at 
higher amplitudes higher modes are active, sometimes 
leading to unexpected occurrences. For example, for certain 
changes in fingerings on a woodwind the playing frequency 
may go up while the first peak of the input impedance goes 
down. This can be observed for fork fingerings. Similar 
effects can be expected in flaring horns and bends, where 
resonances in transverse direction can occur. In this paper 
some effects on woodwinds are studied; blowing 
observations are verified by time domain simulations.  

Introduction 
In a wind instrument a (nearly constant) pressure source 
supplies air through a channel (fixed, or variable between 
lips or reeds). The difference between the pressure in the 
mouth and the resonating air in the top of the instrument 
controls the channel dimensions or the direction of the flow, 
defining the magnitude of the flow entering the pipe. When 
in resonance, the air column controls the flow it needs for 
maintaining its oscillations. Since the process is non-linear, 
except at very low amplitudes, the components of the input 
spectrum of the pipe need to be close to harmonic for a 
stable oscillation. Only at very low amplitudes, the lowest 
resonance peak in the spectrum defines the playing 
frequency. At higher amplitudes, the higher modes have an 
important role in stabilizing the playing (“mode locking” [1, 
2]). If the modes are harmonically related, the playing 
frequency remains the same when the amplitude increases. 
However, if they are not, they can acquire a dominating 
influence and shift the playing frequency: the system seeks 
for an oscillation pattern where the energy output is 
maximized. In the case of the so-called fork fingerings, pipe 
pieces are formed which cause resonances at higher modes 
not harmonic with the fundamental. In extreme cases shifts 
of a semitone are possible. Understanding the phenomenon 
quantitatively is not easy. Even if the input impedance can 

be obtained accurately by measurements or by calculations, 
influences of mouth resonances, reed impedance, flow 
displaced by the moving reed and transverse flow in bends 
and quickly flaring horns are badly defined.  

In the present study, a continuation of [3], some cases 
on woodwind instruments amenable to experiments as well 
as calculations are investigated and serve to illustrate the 
magnitude of the effects. Experiments and calculations 
appear to correspond reasonably well.   

Observations 
In Table 1 some examples of fork fingerings on the 
woodwinds investigated are shown. An open hole is 
indicated by , a closed hole by  and an open hole with a 
key hanging above it by . The instruments were blown; the 
frequency of the stationary state was determined using a 
recording program with a Fourier transform facility. On a 
recorder, successively closing holes (leaving one open, 
forming a fork fingering) effectively lengthens the 
resonating air column, which lowers the playing frequency; 
see Table 1, fingerings 1 to 3 (100 cents = 1 semitone = 6%).  

Performing this action on a clarinet, the frequency 
lowers only at low levels, for higher levels the frequency 
goes up.  On a baroque oboe, the effect is stronger; the note 
may go down 20 cent or go up 40 cent, depending on 
embouchure and blowing pressure. Similar effects are found 
on other instruments; they are especially strong on a 
bassoon. Musicians are acquainted with the effects and use 
them for humouring and stabilizing weak notes.  

The behaviour of the system can be studied using the 
harmonic balance method, but this is not always stable [4]. 
We have chosen for direct time domain simulation (TDS) a 
procedure pioneered by Schumacher [5], see also [6] and [7]. 

Time domain simulation 
Procedure 
The present study concerns both single and double reed 
instruments. Blowing experiments with single-reed 
mouthpieces build for bassoon and oboe have shown that 
there is hardly a difference between the two types of 
blowing, provided the single reed mouthpiece equals the 
bore of the double reed configuration as closely as possible. 
So it was assumed that single and double reed excitation can 
be described by the same mathematical expressions [8]. The 
well-documented equation of reed motion in the time 
domain [9, 10, 11, 12] gives a relationship between its 
displacement from equilibrium, y, and the pressure 
difference across the reed, pd = p – pm, where p is the 
pressure in the top of the tube and pm in the mouth. The reed 
has a stiffness kr, a mass mr, and a damping Gr. When no 
forces are acting on the reed, H is the rest opening of the slit. 

Table 1. Effects of fingering changes on the frequency on some 
instruments 

Instrument Fingering 
no. 

Left hand 
 1  2   3  4 

Right hand 
 2  3  4  5 

Possible  
cents change

Recorder 1          
2         – 80 
3         – 100 

Clarinet 1           
2          – 10 to + 5 

Baroque 
oboe 

1              
2             – 20 to + 40 

NAG/DAGA 2009 - Rotterdam

869



We extend this equation with a term TNL, allowing for the 
increase in reed stiffness when the reed nears the lay  

( ) drrrNL pykyGymT =+′+′′   (1)

where the dash denotes differentiation with respect to time, 
and the term 

( )HyHT SNL ++=1   (2)

is a fit formula taking into account the increasing stiffness 
when the reed nears the lay. This formula is inspired by 
measurements of Ollivier at al [13], plotted in Figure 1. In 
the same figure, the fit formula for the non-linear stiffness 
function is plotted. 

 

 

 

 

 

 

 

 

The flow U entering the instrument is the sum of the 
well-known Bernoulli-flow and the flow induced by the 
moving reed (its area diminishing when nearing the lay and 
assumed to be equal to Sr/TNL) 

        NLrdd TSyppHybU //||2)sgn()( ′−+−= ρ          (3) 

where b = the width of the slit (or reed) and ρ = air density. 
The pressure in the pipe is obtained from a convolution of 
Green’s function G(t) and the volume flow U(t), where G(t) 
is the impulse response function, the inverse Fourier 
transform of the input impedance. For a faster convergence 
we use the reflection function, the inverse Fourier transform 
of the reflection coefficient, R=(Z–Zc)/(Z–Zc), where Z=input 
impedance and Zc=characteristic impedance [5, 6, 7, 14].  
The time step Δt = 1/2fmax, where fmax is the maximum 
frequency of the impedance sampling, where this maximum 
is chosen such that the imaginary part is zero. For the time-
derivatives  
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The impedance was calculated with the transmission 
line method using the dimensions of the instrument, obtained 
from accurate measurements – if necessary after taking it 
apart. An example is given in Figure 2 for the two fingerings 
of the baroque oboe. It is obvious that it is difficult to predict 
the behaviour for these two fingerings from this spectrum.  

Results 
Clarinet  
The clarinet investigated was a Selmer Centered Tone no. 
P8182. The impedance spectrum was calculated with the 
transmission line method. The maximum frequency was 

chosen just below 11 kHz, and it was sampled in 4096 steps. 
Chosen parameters: kr = 6×106 Pa/m, mr = 0.018 Pa.s2/m, Gr 
= 51 Pa.s/m, H = 1 mm [15]. The parameter chosen for best 
fit from the plot in Figure 1 was Hs = 2 μm. For the 
calculation with reed motion flow Sr = 60 mm2, without flow 
Sr = 0. In the latter case the reed motion flow is equal to 
zero.  

 

 

 

 

 

 

 

 

Figure 3 shows the results for the stationary  

Figure 3 shows the results for the stationary frequency 
as a function of the mouth (blowing) pressure. The positions 
of the first peaks of the input impedances are also indicated. 
The frequency of the first impedance peak is lower for 
fingering 2 than for fingering 1, and this is also the case for 
the frequencies of the playing frequencies at low amplitudes. 
At these low levels the pressure in the pipe is close to 
sinusoidal and the resonance is based on the first resonance 
peak. Including the reed motion lowers the frequencies, but 
the difference between the two fingerings remains the same. 
At increasing sound level, the pressure shape becomes close 
to square. Then higher modes lower the note some 5 to 10 
cents, which nicely corresponds to the blowing observations 
(Table 1). As can be seen from Figure 3, the played target 
note, F4 = 349 Hz, is predicted satisfactorily by the 
simulations. The influence of the reed motion is substantial: 
it amounts to about half of a semitone. It explains the 
flexibility the player has of adjusting the frequency to his 
needs by changing the embouchure.  

 
 
 
 
 
 
 
 
 
 
 
Figure 3. Playing frequency as a function of mouth pressure for 
two fingerings of the clarinet for the note (sounding) F4=349 Hz 
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Figure 2. Input impedance for two fingerings of the baroque oboe
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Baroque oboe 
A similar investigation was done for a Schermer baroque 
oboe. The impedance calculated was sampled up to the first 
peak below 10 kHz, in 5000 samples. Parameters were: kr = 
12×106 Pa/m, mr = 0.036 Pa.s2/m, Gr = 100 Pa.s/m, H = 0.4 
mm, Hs = 2 μm, Sr = 20 mm2. The calculated stationary 
frequencies as a function of blowing pressure for the two 
fingerings are shown in Figure 4. Above a certain maximum 
pressure the oscillations jumped into an overtone, at a 
pressure different for the two fingerings. The results were 
verified by actual blowing the instrument. The oboe is 
conventionally blown with a double reed; in the present 
investigations it was blown by a specially constructed single-
reed mouthpiece, in which a small microphone could be 
inserted to study the pressures in the top of the instrument. 
Pressures were found to correspond with those calculated. 
Listening tests did not reveal major differences between 
single and the double reed blowing. In the actual blowing 
tests, overblowing occurred at about the same pressures as 
predicted by the calculations. The differences between the 
two fingerings were the same. It was found that the 
oscillations stopped approximately at the same pressures as 
the calculations predicted, fingering 2 acting up to higher 
pressures than fingering 1. As can be seen from Figure 4, the 
blowing frequency is 494 Hz (B4) and not far from the 
calculated values. Note that musicians prefer fingering 2 for 
playing B4 (written C5).  

 

 

 

 

 

 

 

 
 

Discussion 
The excitation of wind instruments is a complex interaction 
between the valve (for example the reed) and the air 
pressures around it, in particular those in the upper part of 
the pipe. Exactly describing all interactions is a complicated 
task. In this paper only the interaction with the air in the tube 
is considered. Its input impedance was obtained from 
calculations. Theoretical predictions and experiments 
correspond satisfactorily. 

Note that beside the input impedance other phenomena 
have to be considered. For example, resonances in the mouth 
can serve as support for higher notes, as has been shown for 
playing high notes on the saxophone [16]. Another influence 
may be a bend in an air column, which causes a local change 
in the inertance. For low frequencies the inertance decreases, 
which can be compensated by a local diameter reduction 
[11]. However, in a recent study it was found that for bends 
larger than a quarter wavelength the inertance change may 

diminish and even change sign [17]. In real instruments this 
situation will be rare. It also corresponds to experiences of a 
flute builder who constructed a flute with a bend head 
(Figure 5), to ease the somewhat awkward handling of the 
instrument; he did not experience changes in the blowing 
properties of the flute (the bend was not too long) [18]. It is 
also worthwhile to look into the impedance of quickly 
flaring horns, since transverse flow can modify the local 
inertance similar to that of the bend; changes may also be 
frequency-dependent [19].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Normal flute (above) and flute with bend head (below) 
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