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Introduction 
In many multi-channel measurement situations it is often not 
possible to acquire data with sufficiently dense sampled 
arrays. Furthermore, the measurement locations are not 
always regularly sampled or may have holes, e.g. due to 
obstructions. In the field of oil and gas exploration using 
acoustic signals this is often the case. The objective of 
exploration seismics is to image the subsurface of the earth 
based on acoustic reflection measurements made at the 
surface. A source at the surface emits an acoustic wavefield 
which propagates through the subsurface. Any 
inhomogeneity in the earth will cause a part of the 
downgoing energy to scatter back to the surface, where a 
line or a grid of receivers is positioned (see Figure 1). The 
recordings consist of primary and multiple reflections and 
have, for simple structures, a more or less hyperbolic nature 
(see Figure 2). Based on wave theory, these reflection 
measurements can be transformed into an image of the 
subsurface. Before such an imaging process several 
preprocessing algorithms have to be applied to the data, e.g. 
to remove noise and other unwanted energy. These 
algorithms are usually designed for regularly sampled, alias-
free data. Therefore, reconstruction algo-rithms are used to 
transform the measurements into a regularly sampled, 
aliasing free dataset. Usually, in these reconstruction 
algorithms, the assumption is made that the measurements 
can be efficiently described in a suitable transform domain. 
Typical examples of such domain transforms are the Fourier 
transform and the generalized Radon transform. However, 
due to the non-ideal sampling a straightforward 
transformation is not possible. Therefore, the reconstruction 
process is defined as an inversion problem, for which extra 
constraints have to be included to make the solution unique. 
In this paper we will give an overview of typical transforms 
and the involved constraints that can be used to reconstruct 
measurements onto a user-defined spatial grid. 

 
Figure 1: Seismic acquisition in the marine case with a 
source that emits sound waves and a receiver cable with an 
array of hydrophones. 

 

 
Figure 2: Seismic reflection paths have a hyperbolic nature, 
as can be observed in the field measurement shown on the 
right. Blue lines represent primary reflections and the red line 
is a multiple reflection. 

Least-squares Fourier reconstruction 
For seismic records reconstruction in the time domain is not 
necessary. For this reason only spatial reconstruction is 
addressed here. A popular choice is to use the Fourier 
transform as the basis for data reconstruction. Thus, we want 
to describe our dataset in terms of plane wave components. 
The input dataset (space-time recording, such as shown in 
Figure 2) is transformed to the space-frequency domain with 
the Fast Fourier Transform (FFT). Here the inversion can be 
calculated for each frequency separately. The inversion pro-
blem we want to solve is formulated in vector notation as: 
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Here  is the monochromatic data vector in the spatial 
domain and p  the model vector in the wavenumber domain 
for respectively one frequency. A  is the inverse Fourier 
transform matrix, 

p

Δx  the space sampling and Δk  the 
wavenumber sampling. Energy outside the spatial bandwidth 
used in the inversion is accounted by the noise term . After 
the data were reconstructed for each frequency the space-
frequency matrix is transformed back to the space time 
domain and the reconstruction is evaluated there. For 
uniform sampling without gaps the total number of traces 

 and the total number of wavenumber components 
 are equal. In our case the data vector has less entries 
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(reduced by the number of gaps) than the model vector. 
Trying to solve the system of equation (1) without any 
restriction would produce an infinite number of solutions. 
Thus, certain constraints need to be used. Usually, the 
solution which has the minimal model norm is chosen. The 
resulting constrained system has only one solution. 

In general the objective of Fourier Reconstruction is to 
minimize the following quantity: 
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where 2

2
p  is the  norm of p . The noise covariance 

matrix can be expressed (Duijndam et al., 1999) as 
, where  is a constant. The data weighting 

matrix  is a diagonal matrix with the diagonal elements 
defined as  and is normalized such that 
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by the least-squares estimator: 
-1p = (A WA) A WpH H .                        (4) 

In our case the inverse problem is ill-conditioned due to the 
lack of information in the missing traces. Thus, the inversion 
has to be regularized. Here we use damped least squares 
minimization: 
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where 2σ p  is the a priori model variance (Zwartjes, 2005). 
The second term in equation (5) is the restriction on the 
Euclidean model norm. The minimum of this objective 
function is derived as: 

                           -1( )λ+p = (A WA I) A WpH H

2

,          (6) 

with the damping term 2 /λ σ= pc . Here the estimator p , 
which solves equation (5), is the model vector that explains 
the data best for certain wavenumbers (band limitation) and 
coevally has the smallest values. This solution is often 
referred to as Fourier reconstruction with minimum norm 
(FRMN). The influence of the constraint can be varied by 
the damping term λ .  

Note, that this represents the commonly used damped least-
squares solution (especially when , where  is the 
unity matrix). One should realize that by taking this solution 
actually means assuming a minimum energy norm on the 
model space parameters. After the model vectors have been 
estimated the data are generated on the uniform grid. We 
refer to Tarantola (1987) for a detailed discussion of inverse 
theory. Also see Duijndam et al. (1999) and Zwartjes (2005) 
for further information on FRMN. 

W = I I

In Figure 3c an example of FRMN is shown for the case of 
two plane wave events (Figure 3a), which have been 
severely decimated in their spatial sampling (Figure 3b).  

 
a) input data with regular sampling 

 
b) decimated input data 

 
c) reconstructed data with FRMN 

 
d) reconstructed data with FRSI 

Figure 3: Data reconstruction example of irregularly 
sampled data (b), obtained from decimating a regularly 
sampled dataset with two plane wave events (a). c) Damped 
least-squares inversion result (FRMN). d) Result obtained by 
using the Cauchy sparseness norm (FRSI). 

 

Fourier reconstruction with sparseness 
As can be observed in Figure 3c, a proper reconstruction 
quality of the minimum norm least-squares inversion process 
is obtained for small gaps only. For the large gaps, the 
minimum norm constraint enforces the reconstructed 
wavefield to have small values inside the gaps. Note, 
however, that the data match is close to perfect (i.e. the 
reconstructed data resembles the original data at the 
measurement locations). Thus, to improve the reconstruction 
quality for the larger gaps, the minimum norm assumption 
needs to be replaced by another constraint. A popular choice 
for this is a sparseness constraint. The rationale behind this 
constraint is that we assume that we need only a limited 
number of non-zero model domain components (in our case 
Fourier components) to describe our input data. 

For Fourier reconstruction using sparse inversion (FRSI), the 
following objective function is minimized: 
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where the second term represents the Cauchy weighting (see 
e.g. Zwartjes and Gisolf, 2007). Note that this weighting is 
data-dependent, such that solving equation (7) becomes a 
non-linear problem, which is typically carried out by an 
iterative solver (e.g. a Conjugate Gradient scheme). In each 
iteration, the model space parameters of the previous 
iteration are used to construct the least-squares solution: 

a) b) 

                -1+p = (A A S) A pH H ,                      (8) 

where S is a diagonal matrix with the elements defined as: 

               

2

1

1
λ

σ

∗=
+

kk
k k

p

S
p p

.                 (9) 

Figure 3d shows the result for of this approach applied to the 
decimated input data in Figure 3b. Note that the 
reconstruction has greatly improved compared to the FRMN 
result. Furthermore, note that indeed the Fourier domain has 
become much sparser: only the wavenumber components 
belonging to the two plane events have been emphasized. 

Extension to parabolic Radon 
From Figure 2 it is clear that in seismic measurements the 
assumption that the observed responses can be represented 
by a small number of plane wave comoponents is not true in 
general. Especially because of the curved nature of the 
reflection events, a different representation can be more 
effective. Therefore, it has been proposed to use parabolas as 
the basis functions. If the seismic measurements are sorted in 
the so-called common midpoint (CMP) gather domain as a 
function of offset (see e.g. Yilmaz, 1987), the resulting 
measurements can be approximated by parabolas with the 
apex at the zero offset. As a result the parabolas can be 
described by two parameters: apex time τ and curvature q. 
The advantage of a parabolic description is that the 
reconstruction problem can still be defined in the frequency 
domain (see Hampson, 1986). Basically, all of the previous 
expressions can be used again, except that the transform 
matrix A need to be redefined as follows: 
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Note that the parabolic Radon transform is not an orthogonal 
transform, even if the input signal is regularly sampled in x. 

Figure 4 demonstrates the least-squares inversion with a 
minimum norm constraint, as given by equation (6) for the 
case of a parabolic transform operator. Although the two 
events map into two small areas in the parabolic Radon 
domain (Figure 4b), typical smearing effects can be 
observed due to the fact that the input data is bounded 
spatially (i.e. edge effects). When imposing a sparseness 
constraint in the frequency-curvature domain, similar as 
defined in equation (7), a much better resolution in the 
Radon domain is obtained, as visible in Figure 5. 

 
Figure 4: Demonstration of the least-squares parabolic 
Radon transform using a minimum norm constraint. a) Input 
data in the space-time domain. b) Transformed data in the 
curvature-apex time domain. c) Input data in the space-
frequency domain. d) Transformed data in the frequency-
curvature domain. Note the smearing as observed in the 
Radon domain (b). (Figure from M. Schonewille) 

c) d) 

 

a) b) 

Figure 5: Demonstration of the parabolic Radon transform 
using a sparseness constraint. a)-d) are similar to Figure 4. 
Note the high resolution image of the events in the Radon 
domain (b,d). (Figure from M. Schonewille) 

c) d) 

One application of the high-resolution parabolic Radon 
transform is to separate events with (slightly) different 
curvatures. This is desired if we want to remove multiple 
reflections from the seismic measurements. The multiple 
reflections have travelled more into the shallow part of 
the earth, where propagation velocities are low. 
Therefore, the multiples can be recognized as events with 
a stronger curvature compared to primary events with 
same arrival time, which have travelled in the deeper part 
of the earth, where velocities are usually higher. 

In Figure 6 such an application is demonstrated on a 
synthetic data gather from an earth model with three 
reflecting boundaries. The three primary events are 
indicated in Figure 6a with the arrows. After the high-
resolution Radon transform, each event is focused in a 
very small area (Figure 6b), after which the undesired 
multiple events, with the larger curvatures, can be 
removed by muting (Figure 6c). Finally, the result is 
transformed back into the space-time domain, yielding the 
desired primary reflections (Figure 6d). 
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Figure 6: Example of using the high-resolution parabolic 
Radon transform to separate primaries and multiples. a) Input 
data gather after an overall curvature correction. The arrows 
point at the primaries. b) The high-resolution parabolic 
Radon transform. c) Result of  muting the area with the 
multiple events. d) Reconstructed primaries. Note that the 
primary reflections are properly reconstructed. 

Sparseness in curvature and time 
If the spatial sampling becomes too poor, the sparseness 
constraint in the curvature domain alone is not enough to 
recover the measurements properly. In that case an 
additional constraint is included: the 
data is also sparse in the time domain, 
meaning that events have an impulsive 
character. However, to exploit this 
property, the inversion process needs 
to be carried out in the time domain, 
meaning that a decomposition of the 
huge inversion problem in smaller 
sub-problems per frequency is not 
possible. First steps in this direction 
were already taken by Thorson and 
Claerbout (1985) and followed-up by 
Sacchi and Ulrich (1995) and Trad et 
al. (2003). In van Dedem and 
Verschuur (2005) this method was 
used to help reconstructing a severely 
aliased data that is involved in 3D 
multiple removal. The following 
example is from this application, 
where a well sampled dataset with 10 
hyperbolic events (Figure 7a) is 
severely decimated (Figure 7b). This 

decimated data becomes the input for an iterative hyperbolic 
reconstruction process. The initial estimate of the hyperbolic 
model space (Figure 7d) is obtained by simple summing 
over all possible hyperbolic trajectories. The resulting 
estimate has a poor resolution. After applying the sparse 
inversion process, the estimate of the model space becomes 
more and more sparse (Figure 7e-g). Finally, the data can be 
reconstructed with high accuracy to the original dense 
sampling (Figure 7c). 

Conclusions 
Spatially irregularly sampled and aliased measurements can 
often be reconstructed with a good quality by choosing the 
proper transform domain and including a suitable constraint 
on the model space parameters. In practice, a sparseness 
constraint is very powerful. The downside of such constraint 
is that the inversion procedure becomes nonlinear and 
sometimes cannot be solved independently per frequency. 
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Figure 7: a) Original data with 10 hyperbolic events. b) Decimated input data. 
c) Reconstructed data with a time domain sparse hyperbolic transform. d) Initial 
transform domain. e-g) Transform domain after 1, 10 and 20 iterations respectively. 
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