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Introduction

An analytical solution for the propagation of sound in
circular ducts in the presence of laminar mean flow is de-
rived. This solution, using Kummer’s formalism, general-
izes previous results found by Gogate and Munjal in the
particular case of axi-symmetric modes [1]. In this short
communication, the propagation equation is first derived.
Effect of laminar shear flow is then discussed.
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Figure 1: Configuration of the problem

We consider sound propagation in a circular duct with
a laminar mean flow over the x-axis (see figure (1)).
In such configuration, if the effect of viscosity is ne-
glected, if it is assumed that the thermal conductivity
of the fluid is negligible so that the entropy preturba-
tions of the system can be taken to be zero and consid-
ering harmonic waves (acoustic pressure proportional to
P(r) - exp[i(yx — wt + m#b)], v being the propagation con-
stant, w the pulsation of wave and m the circumferential
order of propagating mode), the combination of conti-
nuity equation and Navier-Stokes equation leads to the
Pridmore-Brown equation (1)
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with the non-dimensional co-ordinate ¢ = r/R, M(£) =
Mo(1 — €2) that describes the profile of mean flow, M
being the centreline Mach number, and non-dimensional
parameters I' = yco/w, @ = wR/cy. Here and hence-
forth, upper/lower signs are to be taken for the down-
stream/upstream propagation respectively. Then, in the
case of low Mach number, using |[MoTl'|*> < 1, the coeffi-
cients of the differential equation (1) can be developed at
first order. This leads to the propagation equation

o*p 1—a&?\ OP 5  m? _
8£2+< £ >a—€+<b+c£—£—2)P—0, (2)

with a = £4Mel, b = Q?(1 F 2Mel — T?), and ¢ =
+2MoI'Q2. This equation admits an analytical solution

which is, introducing a = +/(a? — 4c¢),
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with A = W, where K is the Kummer’s func-
tion of first kind. It can be shown that this solution con-
verges on Jp(VE) (the well-known no flow solution [3])
when the Mach number converges on zero. In the same
way, it can also be shown [6] that the analytical solution
(3) converges on uniform flow solution in the case of uni-
form flow.

Dispersion equation

Writing the boundary conditions allows to determine dis-
persion equation. Taking conditions of hard wall, that
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leads to the following dispersion equation in I :
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Propagation constant I' can be computed from this equa-
tion. For a given set of parameters (Mo, 2, and m) this
equation admits an infinity of solutions. The real solu-
tions correspond to propagative modes whereas the com-
plex solutions correspond to evanescent modes.

Effect of laminar shear flow

The influence of laminar shear flow is discussed in this
section. In order to obtain the propagation constant in
the presence of a laminar shear flow, the function F(T') is
plotted numerically for a given set of parameters My, 2,
and m. For instance, after computation of the propaga-
tive constants, profiles of mode (1,0) against Mach num-
ber (between 0 and 0.03) for two frequencies 2 = 4 and
Q = 10 are plotted in figure 2.

The no-flow solution is represented by a bold curve. The
curve corresponding to the higher Mach number (0.3) is
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Figure 2: Profile of mode (1,0), at © = 4 (upper case) and
Q =10 (lower case) for Mach number (0-0.3)

represented by a dashed line. The profiles have been nor-
malized with respect to the no flow profile integrated over
the section. These curves show that deformation of pro-
file increases with increasing Mach number and increasing
frequency, as expected by some authors [4, 5]. The defor-
mation of profile is due to refraction effect. As expected,
we also found that acoustic waves tends to be refracted
towards the wall in downstream propagation whereas it
tends to be refracted towards the core in upstream prop-
agation. The influence of shear on propagation can also
be shown with dispersion curves (I" against 2). Disper-
sion curves for propagating modes (m,n) are plotted on
figure 3 at 0.2 Mach number. Upstream values were set
into the negative for easier comparison and Mach number
have been transformed into a Mach number associated
with volume flow according to M, = (1/5) [¢ M(§)ds =
C M, for ease of comparison of the present results with
previous works.
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Figure 3: Dispersion curves at Mach number 0.2 for modes
(m,n). Whole line : uniform flow, dotted line : laminar flow.

The difference between uniform flow and laminar flow is
due to refraction effect. It increases with increasing fre-
quency and is more important in upstream propagation
than in downstream one. This present results are in agree-
ment with numerical computations conducted by Bihhadi
and Gervais [4]. In order to see influence of shear on prop-
agative constant, figure 4 displays the difference between

values of uniform flow propagative constant and laminar
shear flow propagative constant.
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Figure 4: Difference between uniform flow and laminar flow
constant against frequency (M = 0.3). Whole line : 0 order
radial mode, dashed line : 1 order radial mode, dotted line :
2 order radial mode.

Several behaviors are noticeable. For purely circumfer-
ential modes, (m,0), curves decrease with increasing fre-
quency. Moreover, they seem to converge on the same
asymptote. On the others hands, curves for radial modes
(n > 0), present a bump before converging also to an
asymptote. There are no similar results in the literature
for comparison with the present ones as previous works
did not consider the evolution of the propagation constant
for non axi-symmetric modes. Even if the physical reason
such behavior is left unexplained, our study shows that
shear flow depends on the radial order of the propagating
mode.
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