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Introduction

Optimising a product by 'testing' virtual prototypes requires
multiple calculations of functional performance, including
vibro-acoustics. During the past two decades, Finite Element
Methods (FEM) and Boundary Element Methods (BEM)
have been extensively used, made possible by advances in
computer performance. Nevertheless, the analyst wants
answers about his design within hours, even minutes, to be
able to steer the design: calculations only for verification
purposes may take days or weeks, but that is not acceptable
in virtual prototyping processes. Furthermore, there is a clear
need for advanced tools in the mid-frequency range. Unlike
some high-frequency methods, the useful frequency ranges
for FEM and BEM are mostly not limited theoretically, but
by the capabilities of the computer and the solution time.

The technologies presented make accurate acoustic
predictions timely and effective: speed-ups can be one or
even two orders of magnitude. They tackle a wide range of
applications ranging from engine acoustics to interior
acoustics and enable users to design practical solutions and
effectively reduce time-to-market and development costs.

The commercial package LMS SYSNOISE was used to
compute the numerical examples which are shown.

Acoustic Transfer Vectors

ATVs are input-output relations between the normal
structural velocity of the radiating surface and the sound
pressure level at a specific field point. ATVs only depend on
the configuration of the acoustic domain, i.e. geometry and
properties (sound velocity and mass density), the acoustic
surface treatment (local impedance), the frequency and the
field point location. They do not depend on the loading. The
calculation effort for a single ATV is about the same as for a
single load case response calculation.

ATYV for multi-load-case forced response

Because the calculation cost is relatively low, and AT Vs are
(by definition) independent of the acoustic loading
conditions, ATVs can be used efficiently in multi-load-case
acoustic response analyses. There are also interesting
extensions to Panel Acoustic Contribution Analysis and
Inverse Acoustic Numerical Analysis. A very-useful data
reduction can be had from using Modal ATVs, the modal
counterpart of the ATVs, expressing the acoustic transfer
from the radiating structure to a field point in modal
coordinates. A further speed-up can be had from an
interpolation scheme for the ATV coefficients, using master
and slave frequencies, applicable to exterior problems
(where strong resonances do not occur). It can be shown that
a safe choice of master frequencies is such that Af < c¢/4r,
where c is the speed of sound and r is the maximum distance
between the mesh nodes and the field points.
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ATV Example

An acoustic BEM mesh of 7504 nodes (Figure 1) is used for
an engine. Both the radiated acoustic power and the
pressure at 19 specific locations were computed (Figure 2).

Figure 2: Sound pressure level above engine

The response was computed from 1000 to 6000 RPM, with a
step of 50 RPM, and from 0 to 2000Hz with a frequency step
ranging from 4.2Hz at 1000 RPM to 25Hz at 6000 RPM
(21400 frequency solutions in total). Different frequency
steps were used at different RPMs, to identify the orders.
The complete run took approximately 13.5 hours. A
conventional BEM approach would need about 223 days to
perform the same computation - an impossible task!

Padé expansions

The aim of Padé expansion is to solve the Helmholtz integral
equation for a complete frequency band, using factorization
of the matrix at selected frequencies (called master
frequencies). For large problems, the computation time is
dominated by the factorization time of the matrix. Therefore,
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avoiding multiple factorizations gives large time savings.
This is done by approximating the frequency response
function by a Padé Approximation. Using Padé
Approximation rather than more-classical Taylor expansions
is justified by the fact that the coefficients can have singular
points (poles or eigen frequencies) and is usually not
holomorphic but only meromorphic, so that its Taylor series
does not converge everywhere. The calculation requires the
knowledge of the successive derivatives of the acoustic
quantities with respect to frequency, evaluated at a 'central’
frequency. A recurrence scheme results, having the
important property that the calculation of the successive
derivatives requires the factorization of a single matrix. In a
given frequency range, we compute several matrices for
different frequencies. The higher-order derivatives are
computed from these different evaluations, and for increased
performance, it can be assumed that there is a smooth
variation with frequency.

Practical Issues

The practical value of the procedure depends on accuracy,
speed (speed-up can be 10 times) and memory and disk
requirements (several matrices need to be stored). The
approach is limited to free field radiation without
resonances. Master frequencies and the order of derivatives
are selected automatically based on an accuracy level
specified by the user.

Padé expansion example

An acoustic response was calculated for the engine example
given before, 80 frequencies from 700Hz to 1500Hz on HP
C3600. The computation using a conventional BEM
approach took 11 hours 36 minutes, whereas with Padé
expansion it took 1 hour 12 minutes: a speed-up of 9.6. A
comparison of the pressure above the engine is so close that
the frequency-function curves appear to be superimposed.

(The Padé Approximation is implemented in the SYSNOISE
solver in partnership with CADOE SA, France.)

Krylov Iterative Solvers (FEM)

For FEM problems, as model size increases the total
computation time is dominated by the solution of the linear
system. An iterative solver circumvents this and also reduces
memory requirements. The iterative solver is based on two
Krylov subspace iterative methods, the restarted generalized
minimal residual (GMRES) method and the quasi-minimal
residual (QMR) method. These two methods are known to
be robust.

The GMRES method is the most robust but also most
expensive, as it requires the storage of the whole sequence of
vectors to be orthogonalized. In practice, restarted or
truncated versions are used to alleviate this drawback. The
QMR method is less expensive in terms of computation time
and memory requirements but also less robust. Therefore,
the iterative solver we use is based on the QMR method with
an automatic shift to GMRES in case of breakdowns.

The approximate factorization technique

The convergence of Krylov subspace methods is strongly
influenced by matrix conditioning. Pre-conditioning

transforms the original system into a better-conditioned
equivalent one by a pre-multiplication.

A parallel version of the iterative solver can be used, for
additional time gains. The strategy is based on the concept of
pseudo-overlapped sub-domains.

Iterative solver example

An air intake is shown in Figure 3 and contains 117608
elements and 37593 nodes. Resources for a single frequency
on SGI Origin 3000 were:

Solver Memory (MB) CPU time (sec)
Direct 538 633
QMR 15 17 (117 iterations)
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Figure 3: Air intake FE mesh

Domain Decomposition

Large problems can be tackled by division into sub-domains.
Two methods have been used: Finite Element Tearing and
Interconnecting (FETI) and a parallel form of the AFT
introduced in the previous section. The FETI approach is
based on a direct resolution for each sub-domain but an
iterative one to solve the interface problem between
domains; whereas the parallel AFT is fully-iterative, and we
have used a concept of pseudo-overlapped domains with
continuity between domains forced at the end of each Krylov
subspace iteration. The AFT method therefore gives a speed-
up of 30 to 40 times compared to the FETI approach.

Network solvers

Parallel processing can be executed at several 'levels'. At the
Frequency Level, several processors (eg on a network) can
each be given a sub-set of the complete frequency range to
solve: the speed-up is nearly linearly-proportional to number
of processors. At the Matrix Level, the complete system for
one frequency is partitioned between processors: it enables
extremely-large BEM problems to be solved, but the speed-
up is less than linear. At the Thread Level, the operations
within computations are assigned to several processors: the
speed-up is less than linear, and shared-memory parallel
hardware is needed, with compilers accepting OpenMP
directives. Thread Level and Frequency Level can be
combined. Further details will be given in the presentation.




