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Abstract

In classical, HMM-based speech recognition, the prob-
ability of the production of a segment of acoustic data
given a hidden Markov state of a linguistic unit (e.g.
word, phoneme) is modelled via probability density func-
tions (pdf), mostly mixtures of multinomial Gaussians
(GMM). Replacing GMM production by direct classifi-
cation of the states opens a new approach which can
be made robust, discriminative and generalizing. This
is achieved with so called kernel methods, namely with
Support Vector Machines and Kernel Fisher Methods,
embedded in an HMM framework. Kernel Methods re-
quire few training data and can be adjusted to the degree
of data mismatch. Results are presented on established
data sets which show the potential of the method.

Speech Recognition using Hidden Markov
Models

The general task of Automatic Speech Recognition
(ASR) is to deduce an unknown sequence of words (text)
from its observed acoustical realization, an utterance.
We must thus “reverse” the process of speech produc-
tion.

Predominantly, Hidden Markov Models (HMMs) are
used in ASR. A HMM is a stochastic finite state au-
tomaton (SFSA) built from a finite set of possible states
Q ={q,.-.,qx}. Each of these states is associated with
a specific probability distribution. A specific HMM M;
is, then, represented by a SFSA comprised of L; states
Si ={s1,...,81,...,5L, } with each s; € @, arranged ac-
cording to a certain, most often predefined, topology.

Thus, HMMs can be used to model a sequence of feature-
vectors X = {xi,Xg,...,Xp} as a piecewise station-
ary process where each stationary segment is associated
with a specific hidden (not directly observable) linguis-
tic HMM state, typically word labels or phoneme states.
This approach models the temporal structure of speech
as well as the locally stationary generation of the speech
signal from the internal states. Theory and methodol-
ogy of HMMs are described in a number of sources, e.g.
[5]. The fundamental equation describing this process is
Bayes’ rule, applied to speech recognition:

p(X|M,®)P(M|O)
p(X[®)

P(M|X,0) = (1)

in which © is the parameter set and P(M|X,®) is the
posterior probability of the hypothesized HMM M given
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a seqence X of feature-vectors. Since this probability
cannot be computed directly, it is usually split according
to (1) into the acoustic model p(X|M,®) and a prior
P(M|®) representing the language model. The (full)
acoustic likelihood is computed by expanding it into all
possible state paths in M that can generate X, usually
approximated by the best possible path in the ‘Viterbi”-
approximation. When decoding an observation X, we
have to find the model M} which maximizes P(M|X, ©):

(2)

j argmax p(X|M,®)P(M|O) .
Vi

The acoustic model p(X|M, ©) is usually realized using
GMMs. However, these models suffer from limited dis-
crimination and generalization ability, calling for alterna-
tive descriptions with better properties. Artificial Neural
Networks [2] have been used in the past. GMMs model
the production probability of an acoustic observance to
be created from internal state g;. Bayes’ rule then gives
the probability of classification into a particular acous-
tic unit. In a more straightforward way, one can aim at
designing appropriate classifiers which model P(g;|z, ©)
directly for each g;. One can probabilistically interpret
P(g;|x,0), e.g. use Bayes’ rule (1) in reverse direction,
to arrive again at production probabilities, as required
if one wants to remain within the HMM terminology.
Using such classifiers has the advantage that a number
of desired effects can be modelled directly: the classifiers
can be trained to achieve optimal generalization on given
(even small) data sets, and they can be made discrimi-
native in a true sense, i.e. being fine-tuned at sensitive
class boundaries whereas not focussing on regions where
class assignments are uncritical.

Kernel Methods

In order to reach the desired effects described in the
last section, a number of so-called kernel-methods have
been developed and extensively used in other fields of
pattern recognition over the last decade. We give ac-
count here of the use of two prominent types of methods:
Kernel Fisher Discriminants (KFD) and Support-Vector-
Machines (SVM).

The Fisher Discriminant (FD) is an approach for two-
class discrimination problems. Consider a training set
X = {x1,X2,...,Xp} belonging to an input space X
and consisting of M samples which are split into two
classes. Let the classes be labelled with +1 defining a
corresponding label vector y € {—1,1}*. The number of
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samples labelled with +1 is ML, the class means are m..
Successful classification of the samples can be achieved by
aiming at y, = Wxp. Projection on w must separate the
class means and at the same time minimise the variances
within the classes. Thus, one has to maximise
wliSpw

- wiSyw

R(w) (3)
with Sp and Sy, denoting the unnormalized between-
class and within-class covariance (scatter) matrices By
differentiating (3) one can see that w is the leading
eigenvector of the generalised eigenvalue problem Spw =
ASyw. However, the application of the FD for practical
problems suffers from the restriction to linear discrimina-
tion in the input space. Sufficiently rich discrimination
directions are aimed at by using a nonlinear mapping ¢
applied to the data X. To avoid an explicit mapping the
so called kernel trick is used [3], where the space F is
induced by certain inner products (kernels)

k(x,x ) = (B(x)2(x)), (4)
among k being Gaussian (or radial basis), polynomial
and sigmoid kernels. The resulting KFD does not require
knowledge of ®. Both FD and KED are equivalent to a
least square regression to the labels [3]. Thus instead of
solving the generalised eigenvalue problem imposed by
the KFD one can obtain an equivalent direction w by
solving

min E(w) = Z @7 (xi)w + b — yi||? (5)

w,b ‘
i=1

with b denoting a bias term. By defining ® — (&7, 1)T
and w — (w’,b)T and by exploiting the fact that w can

M
be expressed as an expansion w = Y a;®(x;), eq. (5)
i=1

can be written in dual form as

min B(a) = [|Ka — y| (6)
«
with [K]; ; = k(x;,x;) denoting the symmetric M x M
kernel matrix and o = (aq,...,an)?. The least square
solution & of (6) is given by the pseudoinverse
a = (K'K)"'KTy. (7)
Note that the dimensionality of K is the number of train-
ing samples, hence the computation of K bears practical
limitations in terms of memory and computational cost
for large datasets.

The KFD is a linear kernel method for arriving at the
class labels y;. SVMs instead aim at computing the la-
bels directly, i.e. y; = sign(w®(x;)), with maximum
margin of the two classes. Using the same kernel meth-
ods as above, one arrives at equations for the constrained
quadratic optimization problem (8), (9) implemented by
the SVM and the resulting decision function (10). Note
that the «; are within bounds C, which is a theoretical
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requirement of the SVM to produce optimal generaliza-
tion.

& = argmaxW(q) (8)
o 1 Lo
W(a) = Zai - 522%0@%%}{(%7%) 9)
i i g
Zaiyi: 0 and 0< oy <C
M#) = sign [Za?ym@,f)] (10)

Experiments and Conclusion

Results are given for first experiments the details of which
are published elsewhere. Throughout all experiments
Gaussian kernels with variance o and monophone rec-
ognizers were used. For comparison, results with GMMs
are given. We trained the KFD-classifier on a subset of
the WSJ consisting of 20 sentences. The test was per-
formed on a second disjoint subset with 10 sentences [1].
The SVM was used for rescoring N-best lists and lattices
of TIMIT recognition results [4]. Results on evaluation
test sets are shown in table 1.

WER | GMM | KFD KFD SVM SVM
c=16 | 0 =17 | N-best | Lat.

WSJ 58.7% | 51.8% 42.0%

TIMIT| 43.3% 42.1% 39.9%

Table 1: Results on the test set for KFD and SVM.

We have shown that it is possible to use the proba-
bilistically interpreted outputs of the KFD and SVM as
an acoustic model for a HMM-based speech recognizer.
They serve to alleviate a number fo drawbacks of GMMs,
in particular they are useful for sparse and noisy data.
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