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Abstract

In this article we present a computationally efficient resam-
pling method for rendering mirror image sources. In a first
stage, the proposed sample-frequency converter transforms
the input signal into a parameter space, in which a second
stage can compute sub-sample values with few operations.
For this, we propose transforming the oversampled input sig-
nal into a sequence of polynomial coefficients and a Farrow
structure for the implementation of the second stage.

Introduction

Mirror image models are widely used for auditory virtual en-
vironments (AVEs) to render early reflections. Among other
things, the simulation of this early reverberation takes the
sound propagation delay of the mirror image sources into ac-
count. For a moving receiver or moving sound sources, the
propagation delays are a function of time. An asynchronous
sample-frequency converter can be used to implement this
variable propagation delay and thus can also take the Doppler
shift into account. Although the Doppler shift may be be-
low the perception threshold for slow movements, an asyn-
chronous resampling of all mirror image signals is necessary
to avoid processing artifacts. Such artifacts occur when a
block-based signal processing model is used and the propaga-
tion delay is determined only once per block.

Signal Distortion

For the implementation of the fractional delay a variety of in-
terpolation methods exists [1, 2, 3, 4, 5]. Interpolation based
on Lagrange polynomials provides a good compromise be-
tween signal distortion, computational complexity, and imple-
mentation effort for the intended system [2]. Signal distortion
is caused by the interpolation filter and can be quantified for
a sinusoidal signal sf with frequency f and the interpolated
output signal ŝf by the signal-to-noise ratio
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This formula can be evaluated for uniformly distributed sub-
sample positions λ and phases ϕ by integration over all phases
and all sub-sample positions. We approximate the signal-to-
noise ratio for 3rd order Lagrange interpolation by
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for the sinusoidal sf (λ, ϕ) =
√

2 cos(λ2πf/fs + ϕ), where fs

denotes the sampling frequency, ŝf (λ,ϕ) the interpolated out-
put signal, and L and M the granularity of λ and ϕ, respec-
tively. For the determination of the polynomial

ŝf (λ, ϕ) = c3λ
3 + c2λ

2 + c1λ + c0

c0 = x(1)
c1 = x(2)− x(0)/3− x(1)/2− x(3)/6
c2 = [x(0) + x(2)]/2− x(1)
c3 = [x(3)− x(0)]/6 + [x(1)− x(2)]/2

(3)
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Figure 1: Signal-to-noise ratio of an interpolated discrete
sinusoidal signal with the frequency f and the sampling fre-
quency fs, using linear and 3rd order Lagrange interpolation

the samples x(n) = sf (n − 1, ϕ) are used. We reform these
equations to yield a form which is optimal for implemention
due to a minimum number of multiplications. Figure 1 shows
the resulting signal-to-noise ratio for L = 100 and M = 100.

The signal distortion caused by the interpolation can be re-
duced by prior oversampling of the input signal. According
to Figure 1, a signal-to-noise ratio of ∼70dB (at the Nyquist
frequency) or greater (at lower frequencies) can be achieved
with 8x oversampling and 3rd order Lagrange interpolation.
Figure 2 shows the spectrogram and selected short-time spec-
tra of the output signal of the implemented interpolation filter
for a moving sound source. We observe that the noise level is
even below -78dB as approximated by (2), because its energy
is spread over several discrete frequencies.

Computational Complexity

The determination of the polynomial coefficients - like in (3)
for a Lagrange polynomial - is based on a weighted sum of
consecutive samples. This can be seen as a convolution which
results in the polynomial coefficient sequence ck(n). Because
all mirror image sources use the same input signal [6], the
computational complexity of the interpolation filter can be re-
duced by applying this convolution to the oversampled input
signal x(n) once for all mirror image sources. This constitutes
a transformation into a parameter space in which sub-sample
values can be computed with few operations. Using a Farrow
structure as shown in Figure 3, only K multiplications per
sample are necessary for each mirror source for an interpola-
tion based on a Kth order polynomial [7].

Based on these considerations we propose a two-stage proce-
dure for an efficient realization of the sample frequency con-
version. The first stage which consists of an oversampling
unit - with a constant factor - and a polynomial coefficient
transformation has a computational complexity of the order
O(1). The second stage is applied to all N mirror image
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Figure 2: Spectrogram (top left) and selected short-time spectra (labeled as “A”, “B”, and “C”) of an interpolated audio

signal using the proposed settings (8x oversampling with a poly-phase lowpass filter and 3rd order Lagrange interpolation). A
moving sound source is simulated which emits a sinusoidal signal (f = 16.5kHz, fs = 44.1kHz), moves linearly with constant
velocity (v = 72km/h), and passes the listener in a distance of 5m. The distance dependent attenuation of the transmitted
signal was not simulated to yield a better comparability of the sub-figures.
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Figure 3: Farrow structure for polynomial interpolation at
sub-sample position λ

sources and thus has a computational complexity of the or-
der O(N). For a great number of mirror image sources the
second stage has a major impact on the total computational
complexity. Thus, the polynomial order used for the interpo-
lation should be as low as possible. Due to symmetry reasons,
an odd polynomial order is preferable. As shown in Figure
1, high oversampling factors are necessary for linear interpo-
lation to yield low signal-to-noise ratios. This results in high
memory requirements for the oversampled signal. A 3rd order
Lagrange polynomial yields a signal-to-noise ratio of at least
∼70dB with prior 8x oversampling and requires only 3 mul-
tiplications for the Farrow structure. Additionally, on mod-
ern IA-32 processors this can be implemented very efficiently
using SIMD (Single Instruction, Multiple Data) instructions
which simultaneously multiply a vector of 4 single precision
floating point variables.

Conclusion

We proposed a computationally efficient resampling method
for rendering moving mirror image sources based an a hy-
brid sample-frequency converter with two stages. We showed

that a transformation of the input signal into a sequence of
3rd order Lagrange polynomial coefficients with prior 8x over-
sampling in the first stage and a Farrow structure in the sec-
ond stage yields a good compromise between computational
complexity and signal distortion.
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