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Motivation  
In geometric acoustics, the classical deterministic but indi-
rect mirror image source method (MISM) [1] and straight-
forward but statistical ray tracing methods (RT) [2] are in 
use. RT looses accuracy because of spatially extended re-
ceivers while the MISM suffers from an exponentially in-
creasing computation time with the reflection order [3].
Beam tracing (BT), i.e. tracing of spatially extended rays, 
[4], can be understood as an efficient combination of both. 
All these energetic methods suffer from neglected wave ef-
fects, mainly diffraction. An efficient energetic beam dif-
fraction method, based on the uncertainty relation, has re-
cently again successfully been tested [5]. But any recursive 
introduction of diffraction lets the number of rays and, 
hence, the computation time (CT) explode.  The basic solu-
tion is to re-unify beams in cases of overlap. This is not pos-
sible with rays. So, as a part of a project to implement the 
method of QPBT [6], the gain of efficiency by using BT in-
stead of RT is investigated where BT serves as reference 
method for accuracy. The rest-reverberation error (after L 
reflections) is neglected - as it is possible in most practical 
cases with absorption. As only a principal study is aimed at, 
the investigation has been restricted to 2D.  

The CT of Ray Tracing 
The algorithm of RT comprises nested loops over a constant 
number of M rays, up to L reflections, and (in the simplest 
case) over all K ‘walls´ (plane polygon surfaces, and, within 
that, in 3D over all vertices). The CT for the last shall be 
summarized by an empirical CT unit CTU. Then the CT is
                                ( ) CTULMLCTRT ⋅⋅=   (1) 
With the sound particle simulation method (SPSM, as a ver-
sion of RT) the immitted 2D-intensity I’ (power per width 
with a source of sound power P) is computed from N sp 
crossings of detectors of area SD  around the receivers (e.g. 
circles) by summing up the relative energies ei (=1 from 
start) weighted with the inner crossing distances wi [7] 
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For normal distributions (with constant energies), the rela-
tive error of the intensity is ND /1=       (3) 
In a diffuse sound field, the expected number of sp crossing 
a detector is RD CCLMN /⋅⋅=  [3] (where the C are the cir-
cumferences of detector and room resp.), hence, with equ. 
1,2, for an accuracy D, the number of sp to be emitted is 
 (for the total energy)  ( ) ( )2// DLCCM DR ⋅=     (4) 
and   ( ) ( ) CTUDCCDCT DRRT ⋅= 2//     (5) 

The CT of Beam Tracing  
First, BT works efficiently (practically only) if the geometry 
is sub-divided into convex sub-spaces separated by 

‘transparent walls’ [8]. At these walls also diffraction events 
close to ‘inner edges’ may be discovered efficiently. The al-
gorithm of BT is recursive as with the MISM: From the 
source, first as many beams as walls are 
emitted (K), recursively split up into 
again and again K, later converging to 
K/2 (mirroring walls must be ‘in front`).  

fig. 1  beam from the left, reflected at 2 walls,  
split up into 2 beams 
So, the number of ‘constructible’ MIS of lth order is about  
      ( ) ( ) 12/ −⋅≈ l

CMIS KKlm          (6) 
But, from this exponentially growing number, only a vanish-
ing number are ‘visible’ (valid). This can be estimated by 
reasons of energy conservation (the total energy of all the 
MIS of lth order must compensate the 1/r –distance -law in 
2D). As can be derived from considering the space of the 
MIS (see fig. 2) the number of MIS on average visible from 
every  receiver is only proportional to the first order of  l:  
      ( ) ( ) lSlm RAVMIS ⋅Λ⋅⋅≈ /2 2π         (7) 
with the mean free path length RR CS /⋅=Λ π  (SR= room 
area). This is not the number of beams to be constructed. 
’Beams are MIS with built-in visibility’. BT is a very effi-
cient straight-forward method to find only MIS, which may 
be visible from at least any receiver point. Immissions are 
counted according the 1/r – law ( ( ))2/´ rPI ⋅= π  simply if a 
receiver lies within a beam. But as beams do not cover all 
receivers, several beams per MIS are necessary to reach all. 
To estimate the number mB of beams (= MIS visible from 
any point) the split-up-factor ( ) ( ) ( )1/ −= lmlmlq BB  is consid-
ered. As beams become narrower with each split-up, this de-
creases and will approach 1. By some geometric-statistical 
considerations turns out: 
             ( ) ( ) ( ) 11/2/1 +−⋅+≈ lmKllq Bm

    (8) 
where Km is the average number of walls in the convex sub-
divided rooms which may be assumed to be small (typically 
Km=3-5). From equ.8 follows the recursion formula 
       ( ) ( ) ( )12/1 −+⋅+≈ lmKllm BmB

    (9)  
and from that the quadratic law ( ) ( )2/1 2llKlm mB ++≈  (10). 
Why is this by one order of l more than the average number? 
 This can be understood considering the grid of mirrored 
 rooms in the MIS space (fig.2): 

       

fig. 2: Split-up of beams by vertices in 
                 the mirror image source space

By each vertex of the MIS space a ‘main beam’ from locally the 
same MIS is split up into many sub-beams representing another 
mirroring permutation visible from another receiver point. 
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The number of splitting vertices is the area of the main beam 
which is about 2/2Λ⋅l divided through RS times KM.
The CT for BT is the total number of beams to be con-
structed up to Lth reflection order which is in the order of L3  

( ) ( ) ( )6/...1 3

0
LKlmLM m

L

BB ++≈=        (11) 

times an empirical CTU’ for projecting a beam onto all the 
walls which is about 3 CTU for RT. Hence 
      ( ) CTULKLCT mBT ⋅⋅≈ 2/3              (12)

Comparison of Ray and Beam Tracing  
So, for same reflection order, the speed-up factor BT/RT is 
    ( ) ( )2/2/ LKMCTCTLQ mBTRT ⋅≈=            (13)                   

fig. 3: Computation time as a function of reflection order L:  
3.order growth with BT (eq.11) versus linear growth (eq.1) with RT 

However, it is more significant to compare the CT of RT and 
BT for a given accuracy of the computed intensities D.  
Case a: For the total immitted intensities the speed-up is  

( ) ( ) ( )23//2, DLKCCDLQ mDRa ⋅⋅≈    (14a)                   
So, with the cube of the reflection order L, RT becomes 
faster than BT (Q<1). For typ. 1dB accuracy resp. 

26.0≈D or 152 ≈= −DN  immitted sp, 4≈mK  and 

10/ ≈DR CC (the detectors should be one order smaller than 
small walls), 3/75 LQa ≈ , hence this is the case for L>4.2.  

Case b: If the accuracy of the intensity within a small 
and late time interval of the echogram tΔ  is of interest, 
only the sp counted within the small distance tcΔ  are rele-
vant, hence the number of emitted sp must be higher by the 
factor ( ) ( ) tTtcLp Δ=ΔΛ⋅= // , where T is the total real run 
time the sp are traced over. The result for this case b is 
    ( ) ( ) ( )22//2,, DLKtcCCtDLQ mDRb ⋅⋅⋅ΔΛ⋅≈Δ     (14b)                   
where Λ= /cTL . For a reasonable accuracy (rest-reverb. er-
ror <1%) only 1/3 of the reverberation time T60 or a 20dB-
decay has to be followed, with T60 for ex. 1.5s, T=0.5s. To 
compute room acoustical parameters reasonably accurate (as 
for ex. the ‘Deutlichkeit’) typ. tΔ =10ms,  such that 
typ. 50≈p . For all these parameters 3/3750 LQpQ ab ≈⋅≈ . 
Then RT becomes faster than BT ( 1<bQ ) only if  L>15.5
(seldom necessary with common absorption degrees >0.1), 
hence, more often BT is faster.  

Case c, if the accuracy of the intensity of a single MIS is 
of interest: As each of the MIS (of different identity i.e. 
mirroring sequence) is represented by a beam, in this case, 
one may imagine that simply N sound particles have to travel 
within a beam, see fig. 4 - even within the narrowest of 
highest order - such that the accuracy D is reached. 
Therefore the speed-up is a constant:     2−≈ DQc          (14c) 

fig. 4  rays in a beam representing a certain 
MIS, with detector   

So, for ex. to compute single MIS with 1dB accuracy, BT is 
always about 15 times faster than RT (in 2D). However, the 
maximum detector diameter d must be small enough and 
obey             ( )LKd m ⋅Λ⋅<≈ /4π         (15). 
Due to the spatial extension of the detectors, further inaccu-
racies occur in the echograms and, hence, in the room acous-
tical parameters computed from that. First, by the temporal 
‘smearing’ of the echogram peaks in the range of a mean 
free path length within the detector cd /Λ ; second, by  
wrong detected MIS (invisible from the detector centre).  
Numerical experiments show good congruence with the 
quadratic growth of the number of beams and the CT and 
quite exact matching for a regular polygons. 

For non-convex but convex subdivided rooms, the compari-
son results are also valid interpreting the order L as the sum 
of reflections and transmissions to other convex rooms 
(where t is the ratio transparent/ real circumference, typ. 
t=0.2…1). For higher t, i.e. cleft geometries as cities, this 
means an advantage for ray tracing.  

Conclusion
While for lower orders beam tracing is faster, beginning at a 
critical order, ray-tracing becomes faster, depending on the 
case and wanted accuracy. These orders are typically 3 – 10 
for case a, and rather 10-30 for case b. So usually, RT is bet-
ter for calculation of only intensities (for ex. noise maps). In 
case of wanted echogram accuracy, the preference depends 
on many parameters. Only for an exact identification of 
MIS, BT, with even at high order less beams than rays, is 
always much more efficient than RT by a constant factor D-2.
However, it is doubtful whether this case is relevant. 
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