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Introduction

This paper presents a description of open microphone
arrays enclosing a spherical scatterer of variable size.
Both open and closed spherical array designs have been
presented in recent literature, each exhibiting their own
strengths and weaknesses. The performance of every in-
dividual design depends on factors including number and
placement of capsules as well as the diameter and phys-
ical construction of the array. As frequency range and
spatial resolution impose conflicting demands, this sur-
vey intends to improve spherical microphone arrays by
carefully weighting their design parameters.

Spherical Harmonics Decomposition

A continuous sound pressure or particle velocity distribu-
tion measured on a spherical surface can be represented
by a superposition of spherical harmonics. These har-
monics form an orthogonal system and are the solutions
of the angular part of the Laplace equation in spherical
coordinates. The decomposition of a distribution x(θ)
into an infinite number of harmonics is done by spatial
Fourier transform, using the spherical harmonics Y m

n
(θ)

as the transform kernel [1].

SHTnm{x(θ)} = χm

n =

∫
S2

x(θ)Y m

n (θ) dθ (1)

The spectrum χm
n represents the angular components of

the distribution. When this distribution is sampled at L
discrete points, the distribution can only be decomposed
into a finite amount of harmonics, leading to limited pre-
cision.

DSHTN{xL} = χN = Y −1
N

xL (2)

Several grids for spherical surfaces with varying orders
and sampling accuracy have been developed in the scien-
tific community.

Physical Layouts and Holography Filters

To relate the transformed microphone signals χm
n to

sound pressure or sound particle velocity, the type of mi-
crophone has to be taken into account. Let’s assume
the entire distribution x(θ) to be known on a surface of
radius r.

Omnidirectional Microphones

Spherical microphone arrays with pressure microphones
arranged in an open sphere do not provide information
about sound particle velocity. The microphone signals
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Figure 1: Filter magnitude for pressure and cardioid micro-

phones around open and closed spheres and around a scatterer

of radius rk = 5mm. Order N = 2 and microphone radius

r = 70mm

correspond to the sound pressure, the spherical harmon-
ics representation of which is given in [2] as

χm

n (kr) = ψm

n (kr) = bnmjn(kr) (3)

It is desirable to extract the wave spectral coefficients
bnm for holography. The division by the spherical Bessel
function jn(kr), which is zero for certain values kr, is
undefined. As is shown in Figure 1 “omni open” the
magnitude of this division represents a holography filter.
The placement of omnidirectional capsules flush mounted
on a sound-hard sphere effectively forces the particle ve-
locity to become zero on the surface and is thus no longer
unknown. With this property the microphone signals be-
come [1]

χm

n
(kr) = ψm

n
(kr) = bnm

[
jn(kr)−

j′
n
(kr)

h′
n
(kr)

hn(kr)

]
(4)

with hn(x) being the spherical Hankel function of the sec-

ond kind h
(2)
n (x), and ′ denoting the first derivative with

regard to time. This approach results in a filter curve
without singularities but nevertheless steep magnitude
for low frequencies, as shown in Figure 1 “omni closed”.
In most physical microphone arrays the capsules, their
mounting and the wiring will form a scattering obstacle of
some kind. This object may not exhibit entirely reflective
properties. A measurement of its acoustic impedance,
preferably in the spherical harmonics domain, has to be
taken.
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Figure 2: A cocentric layout with microphones at radius r

around a scatterer of radius rk

Cardioid Microphones

Microphone arrays built with cardioid microphones sense
pressure and particle velocity. For such capsules arranged
in an open sphere the microphone signals are a combina-
tion of sound pressure and particle velocity [3].

χm

n
(kr) = bnm [jn(kr) − ij′

n
(kr)] (5)

The holography filters have a lower magnitude at low fre-
quencies, thus increasing the usable signal-to-noise ratio
of the system, and exhibit the lowest requirements of all
layouts discussed herein, as seen from Figure 1 “cardioid
open”. The same approach, but with the microphones
placed around a scattering sphere of radius rk as shown
in Figure 2, introduces the reflected components into the
microphone signal spectrum

χm

n (kr) = (6)

bnm

[
jn(kr) − ij′

n
(kr) + (ih′

n
(kr) − hn(kr))

j′n(krk)

h′
n
(krk)

]

This filter magnitude, Figure 1 “cardioid open”, now has
a slightly worse behavior, but is still superior to omnidi-
rectional layouts. However the directivity of real-world
cardioid microphones varies with frequency. This behav-
ior can be approximated with a modified version of equa-
tion (5) in which scaling factors weigh the pressure and
velocitiy components independently. At low frequencies
the zeroth order pressure component will be predomi-
nant. A more advanced approach includes transfer func-
tion measurements of a capsule for all angles. The spheri-
cal harmonics-transformed transfer functions can then be
integrated into equation (6) by means of spherical con-
volution.

Improvements

For cardioid microphones around an open sphere the fil-
ter magnitude can be regarded as a highpass filter with
6dB per octave and a lowpass filter with (N − 1)6dB per
octave. Doubling the microphone radius shifts the two
filters’ common corner frequency down by one octave.
Two strategies exist to work around the high gain re-
quirements. One is to build a dual- or multi-sphere array,

using the outer array to capture lower frequencies. This
allows decomposition of low and high frequencies at the
same order N at the expense of more microphones phys-
ical dimensions of the array [4][3]. The other approach
is to use spherical harmonics decomposition at different
orders in different frequency bands [5]. Both strategies
lose angular resolution at low frequencies by limiting the
order N or increasing the space between sampling points.
Spatial aliasing is the consequence of a limited number of
microphones and hence spherical harmonics. Aliasing is
most prominent for high frequencies. It increases as the
spacing between microphones gets bigger, for example
by enlarging the radius. An error measure for the overall
accuracy of microphone array holography has been sug-
gested in [6]. This holographic error is a scalar measure
comparing an analytic far-field source with its possibly
aliased and distorted replica as resulted from microphone
array holography. The influence of imperfections such as
gain errors and physical misalignment can be considered
as well. This error is defined as a magnitude in dB and
allows to define an upper boundary for artefacts which
in turn defines the upper limit frequency for the array.
It can be shown that doubling the array radius lowers
the upper limit frequency for acoustic holography by one
octave.

Conclusion

Microphone array design poses an exciting challenge in
the consideration of its layout, construction of the hard-
ware, microphone choice and algorithm development.
The tradeoff at hand is about keeping a certain signal-
to-noise ratio while preventing spatial aliasing. The fil-
ters presented for acoustic holography raise the noise
floor of any real array implementation. It is important
to keep their magnitudes as low as possible, which can
be achieved by using cardioid microphones around an
open sphere, by multi-sphere cocentric geometries, and
by applying multiple decomposition orders in different
frequency bands. A combination of these three strate-
gies is desirable and subject to current research.
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