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Introduction

In ultrasonic cleaning and in sonochemistry bubbles and
their motion (oscillation, translation) play a dominant
role. The present contribution discusses the stability of
a single spherical bubble in a standing sound field, em-
phasizing the influence of the static pressure on bubble
stability.

Bubble model

A gas filled spherical bubble isolated in an infinite, com-
pressible and viscous liquid oscillates under the action
of a sinusoidal sound wave. The model is based on the
Keller-Miksis model [1] simplified by omitting the time
delay [2]:
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pac(t) = −pa sin(ωt).

(2)

The equation is solved numerically for the constants:
liquid density ρ = 0.998 kg/m3, surface tension σ =
0.07275 N/m, viscosity μ = 0.001 Pa·s, vapor pressure
(water) pv = 2.330 kPa, static pressure pstat = 100 kPa
to 20 000 kPa, polytropic exponent γ = 1.67, sound ve-
locity in the liquid C0 = 1482 m/s. The variables in the
equation are the radius of the bubble R and time t, an
overdot means the derivative with respect to time t, thus
Ṙ is the bubble wall velocity and R̈ is the bubble wall
acceleration. Rn is the bubble radius at rest. The driv-
ing sound field pac(t) is assumed to be sinusoidal with
pressure amplitude pa and circular frequency ω = 2πνa,
νa being the driving frequency.

Stability

The positional, shape and diffusion stability will be con-
sidered as defined in the subsequent sections. When all
three stability requirements are fulfilled, the bubble is
said to be stable for the given parameters.

Positional stability

In a sound field with its pressure gradients a bubble ex-
periences forces across the bubble surface. In a standing
sound field the net force on the bubble is directed along
the gradient of the sound field and reads

�FB = −〈∇pac V (t)〉τ with pac = pa(�x) sin(ωt) . (3)

�FB is the force averaged over a time span τ of the
bubble oscillation, the bubble entering via its volume
V (t) = 4π/3R3(t). The bubble is located at �x where it
encounters the pressure amplitude pa(�x) with the actual
sound pressure varying sinusoidally in time. In the dia-
grams below, the points in the parameter plane (Rn, pa)

are calculated, where �FB switches sign [3] giving the po-
sitional stability border, where bubbles are driven away
from the pressure antinode upon increasing the driving
pressure amplitude (green-red border).

Shape stability

To test the shape stability a perturbation in the form
of spherical harmonics is introduced and it is calculated,
whether the time dependent amplitude coefficients, al,
of the harmonics decay (parametric stability) or grow
(parametric instability). The lowest aspherical mode,
numbered l = 2, is the easiest to grow (for the equa-
tions to solve, see [4]). In the diagrams below, the shape
instability border is calculated in the plane (Rn, pa) for
different gas concentrations of the liquid, c∞, and for
different static pressures, pstat. This leads to the upper
white area of shape instability.

Diffusional stability

A bubble exchanges gas molecules across its interface
with the surrounding liquid. Because of surface tension
the gas pressure inside a bubble is higher than the partial
gas pressure in the liquid and thus a bubble dissolves. If,
however, a bubble oscillates nonlinearly in a sound field,
the mass flow may be reversed, an effect called rectified
diffusion. The mass flow leads to an alteration of the
bubble radius at rest, Rn. No diffusion on average is
given by dRn/dt = 0 and leads to the expression (see [4]
for more details):
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where c∞ is the actual given gas concentration in the
liquid far away from the bubble and csat is the satura-
tion gas concentration of the liquid. An artificial inert
gas with csat = 0.6 mol/m3 is taken. The notation 〈·〉
means averaging over time and the averaging time is one
period of the oscillation of the bubble, Tosc. In the di-
agrams below, the diffusional equilibrium is calculated
in the (Rn, pa) plane leading to the lower green-white or
lower red-white border.

Bubble habitat

The region in parameter space, where positional and
shape stability criteria are fulfilled for a not dissolving
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Figure 1: Region of shape and positionally stable bubble
oscillations for not dissolving bubbles (bubble habitat, green
area) in a standing sound field of νa = 1 MHz for the static
pressure pstat = 600 kPa at four different gas concentrations,
given by c∞ = csat (upper left diagram), 0.1 csat, 0.01 csat, and
0.001 csat (lower right diagram). In the red area the oscilla-
tions are stable with respect to spherical shape, but unstable
with respect to position in the pressure antinode. In the up-
per white areas the bubbles are shape unstable. In the white
area below the lower bound bubbles start to dissolve. Linear
resonance radius Rn0 = 8.81 μm.

Figure 2: Region of shape and positionally stable bubble
oscillations for not dissolving bubbles (bubble habitat, green
area) in a standing sound field of νa = 1 MHz at the the gas
concentration of c∞ = 0.001 csat for the four static pressures
pstat = 600 kPa (Rn0 = 8.81 μm), 2 MPa (Rn0 = 15.95 μm),
5 MPa (Rn0 = 25.2 μm), and 20 MPa (Rn0 = 50.4 μm). Area
color code as in Fig. 1. The dark green lines are the boundary
for diffusional stability, the blue lines mark the boundaries for
shape stability.

bubble, is called the bubble habitat. In Fig. 1, this
region is plotted in green color in the parameter plane
(Rn, pa) for a bubble driven at 1 MHz at the elevated
static pressure of pstat = 600 kPa for four different gas
concentrations c∞ as given in the figure caption. At con-
stant static pressure the bubble habitat shrinks with de-
creasing gas concentration in the liquid, c∞, down from
saturation gas pressure, csat, the dissolution boundary
first getting rugged (c∞ = 0.1 csat), then smooth again
(c∞ = 0.001 csat). The range of the bubble sizes of the
habitat shrinks from more than 8 μm down to less than
1 μm at c∞ = 0.001 csat.

In Fig. 2, the habitat (green area) is plotted at the re-
duced gas concentration c∞ = 0.001 csat for four differ-
ent static pressures as given in the figure caption. The
parameter plane (Rn/Rn0, pa/pstat) has been introduced
with the bubble radius at rest, Rn, normalized with the
linear resonance radius, Rn0, and the driving pressure
amplitude, pa, normalized with the static pressure, pstat.
The linear resonance radius, Rn0, is calculated according
to the equation
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with ν0 = νa = 1 MHz. When the static pressure is in-
creased at constant gas concentration, the bubble habitat
grows and extends to increasingly larger bubbles, as the
linear resonance radius, Rn0, grows with increasing static
pressure. The maximum bubble sizes in the habitat rise
from less than 1 μm at pstat = 600 kPa to more than
5 μm at pstat = 20 MPa. In the normalized parameter
plane the habitat attains a triangular form in the limit
of high static pressures with normalized driving pressures
between one and two and normalized radii up to 0.1. This
region may be intersected by the loss of shape stability.

Conclusion

With decreasing gas concentration in the liquid the bub-
ble habitat shrinks and extends to ever smaller bubble
radii. With increasing static pressure the bubble habi-
tat expands and extends to ever larger bubble radii. An
increased static pressure thus can compensate a concen-
tration decrease to very low gas concentrations that usu-
ally is necessary to ensure diffusional stability [5]. With
larger bubbles, however, shape instability finally reaches
the habitat region again (Fig. 2, lower right diagram).
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