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Introduction 
With an increased emphasis on light-weight and cost 
efficient designs, spatially varying material properties or 
geometry have become important aspects for many 
engineering applications. This trend has particular 
implications for the structural acoustic performance which 
often is directly governed by the dynamic characteristics of a 
wave carrying structure and where, for example, mass 
reductions implies enhanced vibrations. 

A physically correct description of structural acoustic 
behaviour of built-up systems can often be obtained using 
wave theoretical models involving elementary systems, 
which are combined in such a way that the governing 
physical phenomena of the real system are represented. Such 
models offer the analyst and designer versatile tools as long 
as structural elements with constant parameters can be 
assumed. For optimization purposes, however, spatially 
varying structural parameters are attractive but the structural 
acoustic significance and influence of such variations are 
insufficiently clarified. 

The flexural vibration of beams and plates with varying 
cross-section has received substantial attention from the 
work of Kirchhoff and onwards (see e.g. [1]) but the 
structural acoustic aspects are not considered 
correspondingly. Based on a wave theoretical consideration 
for structures having spatially varying parameters, some of 
the implications are herein exemplified for the practically 
important case of a linearly tapered beam [2].  

Theory 
According to Euler-Bernoulli beam theory, the equation of 
motion of a beam in bending with harmonic time 
dependence reads, 
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If B and m' vary along the beam, exact solutions exist 
provided B  and m' can be expressed by suitable functions of 
x. Here focus is put on solutions in terms of Bessel functions 
as they allow for a large assortment of shape and material 
property variations. 
It can be shown [3] that equation (1) has exact solutions in 
terms of Bessel functions if, 
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 are arbitrary constants. For integer values 
of n the solution reads, 

v(x) = x
!n 2

c
1
J
n
(2" x ) + c

2
Y
n
(2" x )(

+c
3
I
n
(2" x ) + c

4
K

n
(2" x ))

,  (3) 

 
with! 4

= "
1
#
2
"
2

. The requirements expressed by 
equations (2) may be met in many different ways; for 
instance by keeping the material properties constant and 
varying the cross section along the beam. For rectangular 
cross sections this results in beams which must in any case 
have a linear depth taper but where the width variation may 
take on any power of x.  Other possibilities are to fix the 
beam shape and vary the material properties along the beam 
or else to vary both material properties and cross sectional 
dimensions. In the case of a beam with a rectangular cross 
section, a linear depth variation but a non-homogeneous 
beam material it may easily be verified that the density, ρ  
and Young's modulus, E,  must vary with the same power of 
x. Bessel function solutions similar to those of equation (3) 
can also be found for quadratic depth and any power of 
width variation and for cubic depth and any power of width 
variation [4]. In the following, the focus is on beams with 
constant width and a linear depth taper as they are prominent 
from a practical point of view. They are furthermore 
expected to exhibit all the basic features related to bending 
vibrations of variable section beams. 

Consider a finite beam with a rectangular cross section of 
constant width b and a depth which varies linearly between 
h0 at x=0 and h1 at x=L. It is further assumed that the beam 
is made of a homogeneous, linear elastic material. The depth 
X of the beam is a function of the longitudinal co-ordinate x 
and may be expressed as X(x) = h

0
+!x  with 

! = h
1
" h

0( ) L . The mass per unit length and the 

bending stiffness are consequently given by !m = "bX and 

B = EbX
3
12  respectively. The four unknown (frequency 

dependent) coefficients c1, c2, c3 and c4 can be determined 
from the four boundary conditions at the beam ends. Closed 
form expressions can therefore be derived for every single 
element of the finite tapered beam impedance matrix [2]. 
This impedance matrix can be formally written as 
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Attached to the tapered tip is a semi-infinite beam with 
uniform cross section. The cross sections at the beam-tip 
interface are identical. This configuration represents the 
bending wave equivalent of the acoustic horn, because of the 
gradual transition between the tip impedance and that of the 
semi-infinite beam. The impedance matrix describing the 
bending wave horn is obtained by adding 
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to the impedance matrix in equation (4), where k∞ and B∞ 
are the bending wave number and the bending stiffness 
respectively of the prismatic semi-infinite beam. Note that 
the characteristic beam impedances in the matrix of (5) 
consist of the classical Euler Bernoulli expressions which 
neither account for shear deformation nor rotational inertia 
implying that the expressions only applies to slender beams. 
The driving point mobility of the bending wave horn (at the 
free end) is obtained from a matrix inversion. 

For the semi-infinite wedge the following general solution 
may be assumed for the velocity field, 

v(X) =
1

X
AH1

2( )
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A and B are the unknown (frequency dependent) coefficients 
to be determined from the boundary conditions at the free 
end. In Figure 1 is presented the normalized point mobility 

as function of Helmholtz number ! h
0

. For small 
Helmholtz numbers, the mobility is dominated by the 
imaginary part and it is observed that this is stiffness 
controlled. This can be explained by the fact that for 
sufficiently small Helmholtz numbers the depth at the free 
end becomes very small in comparison with the beam depth 
at for instance a quarter wavelength from the end, 
establishing a cantilever type of behaviour of the tip. The 
point mobility magnitude exhibits a broad maximum centred 

at ! h
0
≈1,184 (the estimate is obtained from close 

inspection of the imaginary part) while the imaginary part 
changes sign. At high Helmholtz numbers the mobility of the 
semi-infinite wedge asymptotically approaches the mass 
governed mobility of a semi-infinite prismatic beam with 
depth h0 i.e., the depth at the free end. 

In order to gain more insight into the rather involved 
expression for the characteristic mobility it is useful to study 
the asymptotic behaviour for small Helmholtz numbers. 
Upon expanding the Bessel functions for small arguments, 
the asymptotic transfer mobility can be found to be given by 
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From (7) is found that the real part of the mobility at the tip, 

and therefore the power fed into the beam by force 
excitation, is independent of h0 at low Helmholtz numbers 
whereas the imaginary part has a logarithmic dependence. 
Reduction of the tip height, for a constant tapering angle, 
may therefore result in arbitrarily high driving point mobility 
while the power remains finite. This may again be explained 
by the fact that at low Helmholtz numbers the beam depth, 
"seen" by the propagating wave is much larger than the tip 
depth; the latter consequently has no significance for the 
energy but governs the deformation. 
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Figure 1: Normalised real and imaginary parts of force 
mobility at the tip of a semi-infinite wedge. Normalised real 
and imaginary parts of force mobility of a uniform, semi-
infinite prismatic beam of height equal to that of the tip of 
the semi-infinite wedge (······). 

 

Concluding remarks 
From the analysis of the influence of tapering on the 
dynamic characteristics of the flexural wave counterpart to 
the acoustic horn, it is found that the main distinction to the 
uniform case is the comparatively broad-banded transition 
from flexural vibrations governed by the properties of the 
deep part of the system to flexural vibrations governed by 
those of the slender part. The transition itself, furthermore, 
involves a transition from mainly translational to rotational 
motion of the tapered part. 
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