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Introduction

The impulse response and its associated transfer func-
tion are the most important properties of linear time in-
variant acoustic systems. During the impulse response
measurement, sometimes plenty of synchronous average
has to be implemented to improve the signal-to-noise ra-
tio(SNR). In this case, a little bit temperature-variance
could lead to large errors after average. In fact, corre-
sponding to the temperature shift, the impulse response
varies with a time-stretching process, and in frequency
domain, it appears as resonance frequency shift. This
time-stretching process can be compensated by stretch-
ing the various-temperature impulse response back to a
constant-temperature impulse, and then the correct im-
pulse response can be obtained, and the correct average
can be performed.

Time Stretching Model

Since all kinds of impulse responses are determined by
the wave equation, the impulse response variance caused
by temperature drift can be derived by the wave equa-
tion. Eq. 1 is the non-source wave equation of an acoustic
system,
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where T0 is the absolute temperature, c0 is the speed of

sound in the air. The term
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is the boundary condition. The impulse response h(t) is
determined by the wave equation. During the impulse
response measurement, assuming that 1, The tempera-
ture in the measured acoustic system is uniformly dis-
tributed. 2, The temperature does not change within
one measurement period. 3, The boundary conditions
does not change with the temperature. Then if the tem-
perature changes from T0 to T0+ΔT , the speed of sound

changes from c0 to ζ · c0 , where ζ =
√

T0+ΔT
T0

. The wave

equation can be rewritten as
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where p = p(x, y, z, t), Yn is the admittance of the bound-
ary, and ρ0 is the density of the air. Because the Yn , ρ0
are independent on the temperature, the boundary condi-
tion does not change with the temperature and the speed
of sound, then making a coordinate system transforma-
tion as Eq. 3
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The wave equation Eq. 2 can be rewritten as Eq. 4
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where ∇′2 = ∂2
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∂z′2 and p′ = p(x′, y′, z′, t′).

Comparing the two wave equations Eq. 4 and Eq. 1, they
have the same form, thus the solution of both wave equa-
tions should be similar. The only difference is the time-
stretching coordinate transformation of Eq. 3. Thus if the
impulse response derived from Eq. 1 is h(t), the impulse
response from Eq.(4) should be the same as system of
Eq. 1, written as h(t′) . Then transforming h(t′) back
to (x, y, z, t) coordinate system, the impulse response
at temperature T0 + ΔT is h(ζ · t), which varies only
with a time-stretching factor ζ . Transforming the im-
pulse response to frequency domain, the transfer function
changes from H(ω) to 1

|ζ|H(ωζ ) .

Time-Stretching Factor Estimation

In this time-stretching model, if the time-stretching
factor ζ is known, the temperature-dependent im-
pulse response can be stretched back to the constant-
temperature impulse response. In order to obtain the
time-stretching factor ζ, one approach is to directly mea-
sure the temperature during the measurement, however,
the humidity could also change is speed of sound. Tem-
perature is not the only physical quantity that changes
the speed of sound, therefore a more reliable approach
is to estimate the the speed of sound shift by maximiz-
ing the cross correlation function of the two impulse re-
sponses, as shown is Eq. (5)
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∫
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where ζest is the estimated time-stretching factor. When
ζest = ζ, the cross correlation Rhh is maximized. When
measuring the impulse response, the excitation signals
have to be generated through the loudspeaker, as illus-
trated by Eq. 6

x1(t) = h(t) ∗ hLoudspeaker(t) ∗ s(t)
x2(t) = h(ζ · t) ∗ hLoudspeaker(t) ∗ s(t) (6)

x1(t) and x2(t) are two measured signals of the same
acoustic system. Because of the temperature variance,
they contain two different impulse response h(t) and
h(ζ · t). Before estimating the time-stretching factor, the
measured signals have to be firstly deconvoluted by exci-
tation signal and the impulse response of the loudspeaker.
The impulse response of the loudspeaker have to be pre-
cisely measured, otherwise the impulse response of the
loudspeaker is also stretched, which could result in un-
known errors. As the time-stretching factor is estimated,
the various-temperature impulse response is automati-
cally stretched back to a constant temperature impulse
response, and the correct average can be performed.

In addition, to calculate the time-stretched impulse re-
sponse h( ζ·t

ζest
), the spline interpolation is used. To get

better interpolation accuracy, the higher the sampling
rate is required [1].

Measurement Results

In order to practically prove this time-stretching model,
a small steel chamber is measured. The positions of the
loudspeaker and microphone are both fixed. The impulse
responses are measured with 44.1 kHz sampling rate.
The temperature was arbitrarily changed from 20.4◦C
to 28.6◦C. Totally, 20 impulse responses of various tem-
peratures is recorded.

Because of the temperature variance, the impulse re-
sponse drifts not only in time domain (Fig. 1), but also
in frequency domain (Fig. 2). In time domain ,the later
part of the impulse response shows the larger phase shift.
In frequency domain, the higher the resonance frequency
locates at, the larger frequency shift occurs.

As shown in Fig. 3, directly averaging those 20 time-
variant impulse responses will lead to wrong average re-
sults, especially at high frequencies. If the different-
temperature impulse responses is firstly stretched back
to the constant-temperature (20.4◦C) impulse response
before the synchronous average, the accuracy of the av-
erage still hold. But above 9000 Hz, the performance of
time-stretching compensation is not as good as the low
frequencies. The reason is the 44.1 kHz sampling rate is
used in this measurement, and above 9000 Hz, the error
of spline interpolation increases very fast. In this case,
the higher sampling rate should be used.
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Figure 1: Impulse response over various temperatures, the
frequency range is from 2 kHz to 10 kHz
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Figure 2: Transfer function over various temperatures
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Figure 3: the performance of average over temperature-
variant measurement with/without time-stretching compen-
sation

Conclusion

In this paper, a time-stretching model is depicted for
the compensation of temperature variance in impulse re-
sponse measurement. With the correct compensation of
temperature drift, people can perform the long-time av-
erage in temperature-variant systems.
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