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Introduction

In this study we are investigating the acoustic equa-
tions as a perturbation of the Navier-Stokes equations
around a stagnant uniform fluid, with mean density ρ0

and without heat flux. For gases the (dynamic) viscos-
ity η is very small and leads to viscosity boundary lay-
ers close to walls. To resolve the boundary layers with
(quasi-)uniform meshes the mesh size has to be at the
same order which leads to very large linear systems to
be solved. This is especially the case for the very small
boundary layers of acoustic waves. We propose effec-
tive (impedance) boundary conditions for curved bound-
aries by a multiscale analysis, which separate velocity
and pressure into far field and correcting near field. The
boundary conditions are stable and asymptotically exact,
which is justified by a complete mathematical analysis in
[1] for the components of asymptotic expansion.

Formulation of the problem

Let Ω ⊂ R2 be a bounded domain with smooth boundary
∂Ω. We consider dimensionless time-harmonic acoustic
velocity v and acoustic pressure p (the time regime is
e−iωt, ω ∈ R+) which are described by the coupled sys-
tem in the framework of Landau and Lifshitz [2]

−iωv +∇p−R−1∆ηv = f , in Ω, (1a)

−iωp+ divv = 0, in Ω, (1b)

v = 0, on ∂Ω. (1c)

In the momentum equation (1a) with some known source
term f the viscous dissipation in the momentum is not
neglected as we consider near wall regions. Here, R−1 =
η/(ρ0cL) � 1 is a dimensionless number, c the sound
velocity, L the characteristic length of the domain, and
∆η := ∆ + ( 1

3 + ζ/η)∇ div with ζ ≥ 0 the second (vol-
ume) viscosity. The continuity equation (1b) relates the
acoustic pressure linearly to the divergence of the acous-
tic velocity. The system is completed by no-slip bound-
ary conditions (1c). Here we assume that f = 0 on ∂Ω,
more general results can be found in [1].

Asymptotic expansion

The acoustic equations (1) show a viscosity boundary

layer of thickness O(
√
R−1) for the tangential compo-

nent of the velocity. Introducing the small parameter
ε =
√
R−1 and curvilinear coordinates (t, s) close to the

boundary where t is the tangential variable and s the
normal one, we write the solution of (1) inspired by the

framework of Vishik and Lyusternik [3] as

v=

∞∑
j=0

εj
(
vj + ε curl2D φ

j
)

; p=

∞∑
j=0

εjpj , (2)

where vj(x, y) and pj(x, y) are terms of the far field
expansion, the near field terms φj(t, sε ) represent the
boundary layer close to the wall, and curl2D =
(∂y,−∂x)>.

The method of multiscale expansion separates the far and
near field terms. The far field velocity terms vj satisfy
the partial differential equation (PDE)

∇ divvj + ω2vj = iωf · δj=0 + iω∆ηv
j−2, (3a)

vj(t, 0) · n = ∂tφ
j−1(t, 0), (3b)

where φ−j ≡ 0 for j < 0, δj=0 the Kronecker symbol
which is 1 if j = 0 and 0 otherwise, and n the outer
normal vector. The far field pressure terms follow as

pj = − i

ω
divvj . (4)

The near field terms φj(t, S) for S ∈ [0,∞) are defined
by the ordinary differential equation (ODE)

iωφj + ∂2
Sφ

j = κ
(
3 iωS + 3S∂2

S + ∂S
)
φj−1 − ∂2

t φ
j−2

+
(
− 3 iωκ2S2 − 3κ2S2∂2

S − 2κ2S∂S
)
φj−2 (5a)

+
(
iωκ3S3 + κ3S3∂2

S + κ3S2∂S + κS∂2
t − κ′S∂t

)
φj−3,

with the boundary condition

∂Sφ
j(t, 0) = vj(t, 0) · n⊥, (5b)

and decay condition for S →∞. Here, n⊥ = (n2,−n1)>

and κ are tangential vector and curvature on ∂Ω. Note,
that in this ODE the tangential variable t is just a pa-
rameter.

The far field velocity term v0 has only a vanishing normal
component, and the tangential component gets zero only
if ε curl2D φ

0(t, sε ) is added, see (1c), where the zeroth
order near field function for S = s

ε

φ0
(
t,
s

ε

)
=

1− i√
2ω

exp
(
− (1 + i)√

2

√
ωs

ε

)
v0(t, 0) · n⊥

decays exponentially away from the boundary. The sum
v0 + ε curl2D φ

0(t, sε ) has a non-zero, but small normal
component and is therefore corrected by εv1. The far
and near fields are iteratively computed as follows:

f
PDE (3)−→ v0 ODE (5)−→ φ0 PDE (3)−→ v1 ODE (5)−→ φ1 PDE (3)−→ · · ·

↓ (4) ↓ (4)

p0 p1

DAGA 2012 - Darmstadt

169



order 0 order 1 order 2 exact

Figure 1: Comparison of the real part of the pressure.

Impedance boundary conditions

Outside a O(ε)-neighbourhood of the boundary the far

field velocity
∑N
j=0 ε

jvj serves as accurate approximation
to v, where the error is the smaller the higher N . With
approximative models and impedance boundary condi-
tions approximations vappr,N ≈ vε,N shall be defined by

a single PDE, respectively, using again R−
1
2 instead of ε.

Impedance boundary conditions for the velocity. We de-
rived the approximative models for N = 0,

∇divvappr,0 + ω2vappr,0 = iωf , (6a)

vappr,0 · n = 0, (6b)

for N = 1

∇ divvappr,1 + ω2vappr,1 = iωf , (7a)

vappr,1 · n− 1
ω2

(1+i)√
2ωR

∂2
t divvappr,1 = 0, (7b)

and for N = 2

(∇div− iω
R∆η)vappr,2 + ω2vappr,2 = iωf , (8a)

vappr,2 · n− 1
ω2

(
(1+i)√

2ωR
∂2
t divvappr,2

+ i
2ωR∂t(κ∂t divvappr,2)

)
= 0. (8b)

Compare also the impedance conditions of 1st order in [5].

Impedance boundary conditions for the pressure. For any
N the quantity pappr,N := 1

iω divvappr,N shall approxi-
mate p accurately even up to the boundary, as the pres-
sure does not show boundary layer behaviour. Apply-
ing div to (6a), (7a) or (8a), respectively, and using the
identity div curl2D ≡ 0 we observe Helmholtz equations
for pappr,N , and we get impedance boundary conditions
after evaluating the normal component of (1a) and us-
ing (6b), (7b) and (8b). The resulting approximative
models are for N = 0

∆pappr,0 + ω2pappr,0 = div f ,

∇pappr,0 · n = 0,

for N = 1

∆pappr,1 + ω2pappr,1 = div f ,

∇pappr,1 · n + 1+i√
2ωR

∂2
t pappr,1 = 0,

and for N = 2(
1− ( 4

3 + ζ
η ) iω

R

)
∆pappr,2 + ω2pappr,2 = div f ,

∇pappr,2 · n + 1+i√
2ωR

∂2
t pappr,2 + i

2ωR∂t(κ∂tpappr,2) = 0.

Error estimate

Let us state an error estimate for the previously defined
velocity and pressure approximations.

Lemma If ω2 is not a Neumann eigenvalue of −∆,
then, for any δ > 0 and Ωδ the domain Ω without a
δ-neighbourhood of ∂Ω there exists a constant Cδ and
such that for N = 0, 1, 2

‖v− vappr,N‖H(div,Ωδ)

R−
1
4 ‖ curl2D(v− vappr,N )‖L2(Ωδ)

‖p− pappr,N‖H1(Ω)

 ≤ CδR−N+1
2 .

For a rectangular domain with omitted disk we have per-
formed numerical simulations for the exact model (1)
and the approximative pressure models, see Fig. 1. We
have used high-order finite elements within the numerical
C++ library Concepts [4] to push the discretisation error
below the modelling error. Figure 2 shows the modelling
error in dependance of the viscosity.

Figure 2: The modelling error ‖p − pappr,N‖H1(Ω) + ‖v −
vappr,N‖H(div,Ω) for N = 0, 1, 2 w.r.t. viscosity.

Conclusion

With the technique of multiscale expansion we have
derived approximative models up to order 2 approxi-
mating the velocity and pressure for small viscosities.
These are partial differential equations and (generalised)
impedance boundary conditions which relate on the
boundary the normal component of the velocity to its
divergence or the normal derivative of the pressure to
the pressure itself.
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