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Motivation  
In contrast to common reverberation theory, the reverbera-
tion times RT in non-diffuse sound fields depend on the 
room shape, the distribution of the absorption and especially 
the scattering coefficients �. With parallel plane walls of 
low absorption and scattering, as in shoe-box-rooms, flutter 
echoes may occur with a RT much longer than according to 
Sabine. The opposite is the case with focusing effects onto 
absorbing parts of the surface (often the audience) as in 
domes or semi-circular rooms. In all these cases, scattering 
and direction effects onto absorbing or non-absorbing parts 
of the surface play the crucial role [1]. However, the RT can 
up to now only be computed numerically or for totally dif-
fusely reflecting walls. So, the aim is to find approximating 
formulae or at least a semi-analytical approach for RT cor-
rection factors as a direct function of �. For this purpose, 
this study is restricted to 2D. Two opposite cases are investi-
gated analytically and for reference numerically: A) a rec-
tangular 'room' and B) a semi-circular room. 

Reverberation in the diffuse sound field  
The approach here is to consider a step wise energy decay as 
with the Eyring theory [2]. With that, the RT constant is the 
proportion of the mean free path length  Λ � 4�/	  and an 
average absorption exponent  
�	
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where 
�
 � � ln�1 � 
��		,	 
� � ∑
� 	�/	 is the mean 
absorption degree a 'representative' 'sound particle' sees in a 
'diffuse sound field' (V=volume, S= surface , 	�= single sur-
faces,  
� = absorption degrees, c= sound velocity). The time 
for a 60dB decay is generally � � 6 ln�10�	�.   
In 2D (with U= circumference, S= ground area) the mean 
free path length is         (2) 
The ‘average absorption degree’ is lengths-weighted: 
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(edge lengths %�, B= eff. absorption length). So, in 2D, the 

Sabine RT is  �&'" � 6 ∙ ln�10� �
�	��

) 0.128 -
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The Kuttruff reverberation time depends also on the varia-
tion of the absorption degrees and is even smaller than the 
Eyring value [3]:       �&'" .) �/� .) �0122

A)  Reverberation in a rectangular room 
To enhance the chance for a semi-analytical investigation, 
the problem is simplified as much as possible: a 'room' of 
length L ('floor 'and 'ceiling' totally absorbing) and height H  
(front- and end walls totally reflecting and scattering 
with	� ). Parameters are: the proportion q=H/L (typically< 
1 or <<1) and � (fig.1). � � 1 means Lambert reflection 
with the probability density   

     
34
35 � 678�9�/2  ,  normalized for 2D. (5) 

The source is in the middle. Inserting the surface S� :;² , 
the circumference = � 2;�1 > :� and the mean absorption 
degree 
 � 1 �1 > :�⁄  and exp. 
�
 � @A�1 > 1/:�	to 
equ.1-4 yields for reference the Sabine reverberation  time   

   

fig.1: the rectangular room (in the middle) and its mirror rooms  
           only in longitudinal direction as only front walls reflecting  

  �8B% � 0.064 ∙ :	 ∙ ;	   (6) 

and (better) the Eyring   ��� � C&'"
�DEF�∙GH�DED F⁄ �	 (7) 

and the even smaller Kuttruff  value  (8) 
�0122 � �/� ∙ 
�
/
�′′ with	
�

 � 
�
 > :/�1 > :J�  . 

The aim is to compute the energy decays (start with 1) in the 
whole room. The idea is to classify the sound energies into:  
- the geometrical reflected 'ur-'radiation from the source ('s'); 
- the (after the 1. refl.) always diffusely refl. energy ('d') and 
- the, after once diffusely,  j times geom. refl. energies ('gj'). 
It is assumed that the main energy stream is horizontal, so 
the mean free path length is ; instead of  K, while diffuse ra-
diation fractions are partly absorbed by the long 'side' walls. 
In an iteration, the energy fractions are considered immedi-
ately after the k-th front-wall-reflections. So, some 'transition 
coefficients' U (Uss, Usd, Udd, Udg… ) have to be estimated 
first. The idea to estimate the (rest of the) ur-radiation Es(k)
is: consider the angle fraction 4L/�2M� determined by H/2 
in a distance of (k-1/2) mirror room lengths (fig.1). Then: 
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The transition coefficients  k→ k+1 without scattering are: 
								=]�X� � N-�X > 1� N-�X�⁄ ) 1 � 2 �2X > 1�⁄       (10) 
   This decay is not exponential! 
Assuming Lambert diffuse reflection, the fraction of energy 
reaching a 'side' wall from a front wall is (as known from the 
'radiosity' method or the Kuttruff integral [3]) determined by 

the integral   ^V_ � 1/` a a �b&5∙�b&5
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6789 � e/f, 6789′ � g/f and f � he² > g² (fig.2). The 
  fig.2: Diffuse energy inter- 
  change between a front and a  
  side wall (dashed circle  
  indicates Lambert reflection) 

transition coeff. 'diffuse-absorption' for both sides is (j=0): 

=3i'�j� � 2^V_ � D
F U1 > hj² > :² � h�j > 1�² > :²W(12). 


�kk′ � �ln	�1 � =3i'�0�� inserted in eq.1 instead 
�
	yields 
for � � 1	a RT �3�kk	even longer than �&'"  and >>	�0122 ! 
The transition coeff. from a diffuse reflection to absorption 
after j geometric reflections (i.e. 'in the jth mirror room') can 
be computed in a similar way (equ. 12 for j>0).  
The transition coefficients are now: 
- ur-geo- ur-geo:   =--�X� � =]�X� ∙ �1 � ��
- ur-geo-diffuse:   =-l�X� � =]�X� ∙ �
- diffuse- diffuse:   =33 � m1 � =3i'�0�n �
- diffuse- first time geo:    =3i � m1 � =3i'�0�n	�1 � ��	
- j. geo – j+1. geo:           =ii�j� � U1 � �3i'�j�W m1 � �	n   

- j. geo- diffuse :   =i3�j� � m1 � �3i'�j�n �   

where  �3i'�j� � =3i'�j�/ ∑ =3i'�o� ) 1/�j > 1�pZD
] 	    (13) 
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Correspondingly, the energies in the different classes win or 
lose energy in every step; each iteration step can be per-
formed by a matrix multiplication involving these coeff. : 
The reverberation time of the total process is computed from 
the decay of the summed-up energies. Here only one result 
can be shown for  the typical case q=0.5 and � � 0.1:  

For this case, the Sabine, Eyring and Kuttruff  RT are very 
low (<0.2s,	�3�kk � 0.288 ) while the RT for the geom. refl. 
energy (depending on the threshold where it is counted, here 
at -20dB) is very much higher (1.4s, for 30dB without scat-
tering 9.36s!). Astonishingly, the RT for the urgeo, diffuse 
and total energies are very similar in all cases of q as they 
mutually depend from each other (here 2.15s). After a very 
few reflections, they decay 'in parallel' just on different lev-
els depending on �. The RT in such a rectangular room dras-
tically increase with decreasing scattering coefficients of the 
front walls. For � → 1 the RT approach �3�kk but are still 
higher than according Sabine. Some num. results:  

� 0.05 0.1 0.25 0.5 1 
   RTtot 3.1 1.8 0.85 0.49 0.28 
For all q, the RT can be estimated by 	�2b2 ) �3�kk/�].q

B) Reverberation in a semi-circular room 
Also here the problem is simplified as much as possible: 
there are only two geometric parameter: the radius r and the 
width 2b<<r  of a small piece of floor around the centre (pa-
rameter q=b/r)  which is totally absorbing; all other 'surfaces' 
are totally reflecting , with the degree scattering  �  (fig.4)  

Fig.4. The simplified model 
 of the semi-circular room 

The source is close over the ground in the centre. If a 'sound 
particle' hits the ground, it is either absorbed in the range 
|e| s % else reflected but re-emitted from the centre.  
The approach is here to ask: Which ‘effective absorption co-
efficient’ effα does a ‘sound particle’ ’see’ on the floor if it 

is reflected from the ceiling according the scattering coeffi-
cient  �? This is then inserted into the Eyring equ. 1  
For reference again, inserting the surface 	 � Mf²/2  and the 
equiv. absorption length t � 2% into equ. 4 yields for the 
Sabine rev.time   �&'" � 0.100 ∙ fJ/%	   (14) 
As the first step of the analytical investigation, an approxi-
mate probability distribution for the semi-diffuse reflection  
34
3u is derived from the Lambert law (equ. 5). For vertical in-

cidence and an interpolation between the geometrically and 
diffusely reflected vector  [4] the mixed reflection angle can 
be approximated very well by   v ) � ∙ 9   (15) 
Thus, the probability density for the mixed reflection law is  

(see fig.5):    w
 � 34
3u � 678�v/��/�2��   (16) 

      
	

fig.5: Sound particles scattered at the ceiling (with σ=0.25) / 
approximate probability distribution for the semi-diffuse reflection 

Fig.6. The absorbing part of 
the floor 2b is seen from 
a reflection point R over an  
angle of 2y; the yellow bubble  
at R indicates the reduced 
Lambert probability within the  
angle range of {v�'c � � ∙ M/2
It can be (even for q<0.5 by better than 10%) approximated 
(fig.6) that from a point R at an angle L � �P

J …> P
J  on the 

ceiling the absorbing part 2b is seen over an angle of twice   
     y ) % ∙ 678L/f	   (17) 
on average over all L:    y� ) 2/M ∙ :     (18) 
The probability that the absorbing part of the floor is hit is 
the integral over the reflection distribution: 

     	w' � a w′}vE~�
Z~� � 8oA�y�/�� ) J

P ∙
F
� � 
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This is (for q/	� <<1) at the same time the mean abs. degree 
which 'a sound particle sees' after a ceiling reflection (may 
be >1). The relevant 2 path lengths (from the centre to the 
ceiling and back) are about Λ ) 2f. This and	
�kkinserted in 

equ. 4 yields : �&��� ) 0.128� ∙ d
�

" � 1.28 ∙ � ∙ �&'"       (20) 

The reverberation time approaches zero with totally geo-
metric reflections of the ceiling and approaches the Sabine 
value for totally diffuse reflections – both not surprising. 
A sound particle simulation (3000 particles) was started for 
comparison. The reverberation time �&4	was computed 
from a linear regression analysis of the level decay in the 
range 0…-30dB. Fig.7 shows a result of a comparison. 

Fig.7: The reverberation time in a semi-circular room for r=10m, 
b/r=0.5 as a function of the scattering coefficient of the ceiling	σ:
even for a wide absorbing part �T��� � 2s	) the agreement with 
the approximation of equ. 20 is quite good, at least in tendency. 

Conclusion
Such formulae remain an estimation, a study for special cases.   
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fig.3: level decays in 
a rectangular room: 
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