The Reverberation Time as a Function of the Surface Scattering Coefficients

Uwe M. Stephenson
HafenCity University, 22297 Hamburg, Germany, Email: post @umstephenson.de

Motivation

In contrast to common reverberation theory, the reverberation times RT in non-diffuse sound fields depend on the room shape, the distribution of the absorption and especially the scattering coefficients $\boldsymbol{\sigma}$. With parallel plane walls of low absorption and scattering, as in shoe-box-rooms, flutter echoes may occur with a RT much longer than according to Sabine. The opposite is the case with focusing effects onto absorbing parts of the surface (often the audience) as in domes or semi-circular rooms. In all these cases, scattering and direction effects onto absorbing or non-absorbing parts of the surface play the crucial role [1]. However, the RT can up to now only be computed numerically or for totally diffusely reflecting walls. So, the aim is to find approximating formulae or at least a semi-analytical approach for RT correction factors as a direct function of σ. For this purpose, this study is restricted to 2 D . Two opposite cases are investigated analytically and for reference numerically: A) a rectangular 'room' and B) a semi-circular room.

Reverberation in the diffuse sound field

The approach here is to consider a step wise energy decay as with the Eyring theory [2]. With that, the RT constant is the proportion of the mean free path length $\Lambda=4 V / S$ and an average absorption exponent α_{m}^{\prime}

$$
\begin{equation*}
\tau_{e y}=\frac{\Lambda}{c \alpha_{m}} \tag{1}
\end{equation*}
$$

where $\alpha_{m}^{\prime}=-\ln \left(1-\alpha_{m}\right), \alpha_{m}=\sum \alpha_{i} S_{i} / S$ is the mean absorption degree a 'representative' 'sound particle' sees in a 'diffuse sound field' (V=volume, $\mathrm{S}=$ surface,$S_{i}=$ single surfaces, $\alpha_{i}=$ absorption degrees, $\mathrm{c}=$ sound velocity). The time for a 60 dB decay is generally $T=6 \ln (10) \tau$.
In 2 D (with $\mathrm{U}=$ circumference, $\mathrm{S}=$ ground area) the mean free path length is $\Lambda=\pi \cdot S / U$
The 'average absorption degree' is lengths-weighted:

$$
\begin{equation*}
\alpha_{m}=\frac{\sum \alpha_{i} b_{i}}{U}=\frac{B}{U} \tag{2}
\end{equation*}
$$

(edge lengths $b_{i}, \mathrm{~B}=$ eff. absorption length). So, in 2 D , the Sabine RT is $T_{s a b}=6 \cdot \ln (10) \frac{\Lambda}{c \alpha_{m}} \approx 0.128 \frac{S}{B}$
The Kuttruff reverberation time depends also on the variation of the absorption degrees and is even smaller than the Eyring value [3]: $\quad T_{s a b}>\approx T_{E y}>\approx T_{K u t t}$

A) Reverberation in a rectangular room

To enhance the chance for a semi-analytical investigation, the problem is simplified as much as possible: a 'room' of length L ('floor 'and 'ceiling' totally absorbing) and height H (front- and end walls totally reflecting and scattering with σ). Parameters are: the proportion $\boldsymbol{q}=\boldsymbol{H} / \boldsymbol{L}$ (typically< 1 or $\ll 1$) and σ (fig.1). $\sigma=1$ means Lambert reflection with the probability density

$$
\begin{equation*}
\frac{d p}{d \vartheta}=\cos (\vartheta) / 2, \text { normalized for } 2 \mathrm{D} . \tag{5}
\end{equation*}
$$

The source is in the middle. Inserting the surface $\mathrm{S}=q L^{2}$, the circumference $U=2 L(1+q)$ and the mean absorption degree $\alpha=1 /(1+q)$ and exp. $\alpha_{m}{ }^{\prime}=\ln (1+1 / q)$ to equ.1-4 yields for reference the Sabine reverberation time

fig.1: the rectangular room (in the middle) and its mirror rooms only in longitudinal direction as only front walls reflecting

$$
\begin{equation*}
T s a b=0.064 \cdot q \cdot L \tag{6}
\end{equation*}
$$

and (better) the Eyring $T_{e y}=\frac{T \text { sab }}{(1+q) \cdot \ln (1+1 / q)}$ and the even smaller Kuttruff value

$$
\begin{equation*}
T_{K u t t}=T_{E y} \cdot \alpha_{m}^{\prime} / \alpha_{m}^{\prime \prime} \text { with } \alpha_{m}^{\prime \prime}=\alpha_{m}^{\prime}+q /\left(1+q^{2}\right) \tag{8}
\end{equation*}
$$

The aim is to compute the energy decays (start with 1) in the whole room. The idea is to classify the sound energies into: - the geometrical reflected 'ur-'radiation from the source ('s'); - the (after the 1 . refl.) always diffusely refl. energy ($\left(d{ }^{\prime}\right.$) and - the, after once diffusely, j times geom. refl. energies ('gj'). It is assumed that the main energy stream is horizontal, so the mean free path length is L instead of Λ, while diffuse radiation fractions are partly absorbed by the long 'side' walls. In an iteration, the energy fractions are considered immediately after the k-th front-wall-reflections. So, some 'transition coefficients' U (Uss, $U s d, U d d, U d g^{a}$) have to be estimated first. The idea to estimate the (rest of the) ur-radiation $E_{s}(k)$ is: consider the angle fraction $4 \varphi /(2 \pi)$ determined by $H / 2$ in a distance of ($k-1 / 2$) mirror room lengths (fig.1). Then: $E_{S}(t)=\frac{2}{\pi} \arctan \left(\frac{H}{2 c t}\right)$ or $E_{S}(k)=\frac{2}{\pi} \arctan \left(\frac{q}{2 k-1}\right) \sim \frac{1}{k}$ (9) The transition coefficients $k \rightarrow k+1$ without scattering are:

$$
\begin{equation*}
U_{0}(k)=E_{S}(k+1) / E_{S}(k) \approx 1-2 /(2 k+1) \tag{10}
\end{equation*}
$$

This decay is not exponential!

Assuming Lambert diffuse reflection, the fraction of energy reaching a 'side' wall from a front wall is (as known from the 'radiosity' method or the Kuttruff integral [3]) determined by the integral $\quad g_{H L}=1 / H \int_{0}^{H} \int_{0}^{L} \frac{\cos \vartheta \cdot \cos \vartheta \cdot \cdot d x d y}{2 r}$
$\cos \vartheta=x / r, \cos \vartheta^{\prime}=y / r$ and $r \equiv \sqrt{x^{2}+y^{2}}$ (fig.2). The fig.2: Diffuse energy interchange between a front and a side wall (dashed circle indicates Lambert reflection)

transition coeff. 'diffuse-absorption' for both sides is $(\mathrm{j}=0)$:
$U_{d g a}(j)=2 g_{H L}=\frac{1}{q}\left(1+\sqrt{j^{2}+q^{2}}-\sqrt{(j+1)^{2}+q^{2}}\right)(12)$. $\alpha_{e f f}{ }^{\prime}=-\ln \left(1-U_{d g a}(0)\right)$ inserted in eq. 1 instead $\alpha_{m}{ }^{\prime}$ yields for $\sigma=1$ a RT $T_{\text {diff }}$ even longer than $T_{\text {sab }}$ and $\gg T_{\text {Kutt }}$!
The transition coeff. from a diffuse reflection to absorption after j geometric reflections (i.e. 'in the j th mirror room') can be computed in a similar way (equ. 12 for $\mathrm{j}>0$).
The transition coefficients are now:

- ur-geo- ur-geo:

$$
U_{S S}(k)=U_{0}(k) \cdot(1-\sigma)
$$

- ur-geo-diffuse: $\quad U_{S D}(k)=U_{0}(k) \cdot \sigma$
- diffuse- diffuse: $\quad U_{d d}=\left(1-U_{d g a}(0)\right) \sigma$
- diffuse- first time geo: $\quad U_{d g}=\left(1-U_{d g a}(0)\right)(1-\sigma)$
- j. geo $-\mathrm{j}+1$. geo: $\quad U_{g g}(j)=\left(1-V_{d g a}(j)\right)(1-\sigma)$
- j. geo- diffuse : $\quad U_{g d}(j)=\left(1-V_{d g a}(j)\right) \sigma$
where $V_{d g a}(j)=U_{d g a}(j) / \sum_{0}^{j-1} U_{d g a}(i) \approx 1 /(j+1)$

Correspondingly, the energies in the different classes win or lose energy in every step; each iteration step can be performed by a matrix multiplication involving these coeff. : The reverberation time of the total process is computed from the decay of the summed-up energies. Here only one result can be shown for the typical case $\mathrm{q}=0.5$ and $\sigma=0.1$:

For this case, the Sabinine, Eyring and Kuttruff RT are very low ($<0.2 \mathrm{~s}, T_{\text {diff }}=0.28 \mathrm{~s}$) while the RT for the geom. refl. energy (depending on the threshold where it is counted, here at -20 dB) is very much higher (1.4 s , for 30 dB without scattering 9.36s!). Astonishingly, the RT for the urgeo, diffuse and total energies are very similar in all cases of q as they mutually depend from each other (here 2.15 s). After a very few reflections, they decay 'in parallel' just on different levels depending on σ. The RT in such a rectangular room drastically increase with decreasing scattering coefficients of the front walls. For $\sigma \rightarrow 1$ the RT approach $T_{\text {diff }}$ but are still higher than according Sabine. Some num. results:

σ	0.05	0.1	0.25	0.5	1
RTtot	3.1	1.8	0.85	0.49	0.28

For all q, the RT can be estimated by $T_{t o t} \approx T_{\text {diff }} / \sigma^{0.8}$

B) Reverberation in a semi-circular room

Also here the problem is simplified as much as possible: there are only two geometric parameter: the radius r and the width $2 b \ll r$ of a small piece of floor around the centre (parameter $\boldsymbol{q}=\boldsymbol{b} / \boldsymbol{r}$) which is totally absorbing; all other 'surfaces' are totally reflecting, with the degree scattering σ (fig.4)

Fig.4. The simplified model of the semi-circular room

The source is close over the ground in the centre. If a 'sound particle' hits the ground, it is either absorbed in the range $|x|<b$ else reflected but re-emitted from the centre.
The approach is here to ask: Which 'effective absorption coefficient' $\alpha_{\text {eff }}$ does a 'sound particle' 'see' on the floor if it is reflected from the ceiling according the scattering coefficient σ ? This is then inserted into the Eyring equ. 1
For reference again, inserting the surface $S=\pi r^{2} / 2$ and the equiv. absorption length $B=2 b$ into equ. 4 yields for the Sabine rev.time $T_{\text {sab }}=0.100 \cdot r^{2} / b$
As the first step of the analytical investigation, an approximate probability distribution for the semi-diffuse reflection $\frac{d p}{d \gamma}$ is derived from the Lambert law (equ. 5). For vertical incidence and an interpolation between the geometrically and diffusely reflected vector [4] the mixed reflection angle can be approximated very well by $\quad \gamma \approx \sigma \cdot \vartheta$ (15) Thus, the probability density for the mixed reflection law is
(see fig.5): $\quad p^{\prime}=\frac{d p}{d \gamma}=\cos (\gamma / \sigma) /(2 \sigma)$

fig.5: Sound particles scattered at the ceiling (with $\sigma=0.25$) / approximate probability distribution for the semi-diffuse reflection

Fig.6. The absorbing part of the floor 2 b is seen from a reflection point R over an angle of 2β; the yellow bubble at R indicates the reduced Lambert probability within the angle range of $\pm \gamma_{\max }=\sigma \cdot \pi / 2$
 It can be (even for $q<0.5$ by better than 10%) approximated (fig.6) that from a point R at angle $\varphi=-\frac{\pi}{2} \ldots+\frac{\pi}{2}$ on the ceiling the absorbing part $2 b$ is seen over an angle of twice

$$
\begin{equation*}
\beta \approx b \cdot \cos \varphi / r \tag{17}
\end{equation*}
$$

on average over all φ : $\quad \beta_{m} \approx 2 / \pi \cdot q$
The probability that the absorbing part of the floor is hit is the integral over the reflection distribution:

$$
\begin{equation*}
p_{a}=\int_{-\beta_{m}}^{+\beta_{m}} p^{\prime} d \gamma=\sin \left(\beta_{m} / \sigma\right) \approx \frac{2}{\pi} \cdot \frac{q}{\sigma}=\alpha_{e f f} \tag{19}
\end{equation*}
$$

This is (for $q / \sigma \ll 1$) at the same time the mean abs. degree which 'a sound particle sees' after a ceiling reflection (may be >1). The relevant 2 path lengths (from the centre to the ceiling and back) are about $\Lambda \approx 2 r$. This and $\alpha_{\text {eff }}$ inserted in equ. 4 yields : $T_{\text {semi }} \approx 0.128 \sigma \cdot \frac{r^{2}}{b}=1.28 \cdot \sigma \cdot T_{\text {sab }}$
The reverberation time approaches zero with totally geometric reflections of the ceiling and approaches the Sabine value for totally diffuse reflections - both not surprising. A sound particle simulation (3000 particles) was started for comparison. The reverberation time $T_{s p}$ was computed from a linear regression analysis of the level decay in the range $0 \ldots-30 \mathrm{~dB}$. Fig. 7 shows a result of a comparison.

Fig.7: The reverberation time in a semi-circular room for $\mathrm{r}=10 \mathrm{~m}$, $\mathrm{b} / \mathrm{r}=0.5$ as a function of the scattering coefficient of the ceiling σ : even for a wide absorbing part $\left(\mathrm{T}_{\text {sab }}=2 \mathrm{~s}\right)$ the agreement with the approximation of equ. 20 is quite good, at least in tendency.

Conclusion

Such formulae remain an estimation, a study for special cases.

References

[1] Stephenson, U.M; On the influence of the ceiling and audience profile on the reverberation time and other room acoustical parameters; in: proc. of Intern. Conf. on AUDITORIUM ACOUSTICS 2008 Oslo; Inst. of Acoustics, University of Salford, UK, October 2008
[2] Stephenson, U.M.: A Rigorous Definition of the Term "Diffuse Sound Field" - and why the Sabine Reverberation Formula is Different from the Eyring Formula; in: Fortschritte der Akustik, DAGA 2012, Hrsg. DPG-GmbH, Bad Honnef, 2012
[3] Kuttruff, H.: Room Acoustics, Elsevier Science Publishers Ltd., Barking, England, 3rd ed. (1991)
[4] Stephenson, U.; Eine Schallteilchen-Computer-Simulation zur Berechnung der für die Hörsamkeit in Konzertsälen maßgebenden Parameter. ACUSTICA 59 (1985), p. 1-2

