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In contrast to common reverberation theory, the reverbera- @ = >

tion times RT in non-diffuse sound fields depend on the “0L B | \ | | | '
room shape, the distribution of the absorption and especially
the scattering coefficients o. With parallel plane walls of

low absorption and scattering, as in shoe-box-rooms, flutter

fig.1: the rectangular room (ina{ﬁe1 middle) and its mirror rooms
only in longitudinal direction as only front walls reflecting

echoes may occur with a RT much longer than according to T‘?ab = 0.064-¢ T.s{;b ©
Sabine. The opposite is the case with focusing effects onto and (better) the Eyring Te, = =morrmms )
absorbing parts of the surface (often the audience) as in and the even smaller Kuttruff value (8)
domes or semi-circular rooms. In all these cases, scattering Txutt = Tgy " Q' /o With " = " +q/(1 +q*) .
and direction effects onto absorbing or non-absorbing parts The aim is to compute the energy decays (start with 1) in the
of the surface play the crucial role [1]. However, the RT can whole room. The idea is to classify the sound energies into:
up to now only be computed numerically or for totally dif- - the geometrical reflected 'ur-'radiation from the source ('s');
fusely reflecting walls. So, the aim is to find approximating - the (after the 1. refl.) always diffusely refl. energy ('d') and
formulae or at least a semi-analytical approach for RT cor- - the, after once diffusely, j times geom. refl. energies ('gj").
rection factors as a direct function of ¢. For this purpose, It is assumed that the main energy stream is horizontal, so
this study is restricted to 2D. Two opposite cases are investi- the mean free path length is L instead of A, while diffuse ra-
gated analytically and for reference numerically: A) a rec- diation fractions are partly absorbed by the long 'side’ walls.
tangular 'room’ and B) a semi-circular room. In an iteration, the energy fractions are considered immedi-
.. . ately after the k-th front-wall-reflections. So, some 'transition
Reverberation in the diffuse sound field coefficients' U (Uss, Usd, Udd, Udg® ) have to be estimated
The approach here is to consider a step wise energy decay as first. The idea to estimate the (rest of the) ur-radiation E (k)
with the Eyring theory [2]. With that, the RT constant is the is: consider the angle fraction 4¢/(2m) determined by H/2
proportion of the mean free path length A =4V /S and an in a distance of (k-1/2) mirror room lengths (fig.1). Then:
average absorption exponeAnt Um Es(t) = %arctan (%) or Eg(k) = %arctan (qu—_l) ~% )
Tey = ¢ am! 6] The transition coefficients k— k+1 without scattering are:
where a, = —In(1 — a,,,) , @, = ¥ @; S;/S is the mean Up(k) = Es(k+ 1)/Es(k) ~1-2/2k+1)  (10)
absorption degree a 'representative' 'sound particle' sees in a This decay is not exponential!
'diffuse sound field' (V=volume, S= surface , S;= single sur- Assuming Lambert diffuse reflection, the fraction of energy
faces, a; = abso[‘ption degrees’ c= sound Velocity)_ The time reaching a 'side’ wall from a front wall is (as known from the
for a 60dB decay is generally T = 61n(10) 7. 'radiosity' method or the Kuttruff integral [3]) determined by
In 2D (with U= circumference, S= ground area) the mean the integral gL = 1/H foH f:% (11)
free path length is A=rn-SIU 2 _ r_ — [
The ‘average absorption degree’ is lengths-weighted: C?.Sﬁ,_ ?c/r, cosd N y/randr < x +y ,(flg'.z)' The '
Saib; B ig.2: Diffuse energy inter- . L=
Um ==~ =75 3) change between a front and a y"’ ]
(edge lengths b;, B= eff. absorption length). So, in 2D, the side wall (dashed circle ~ »§
. . A s indicates Lambert reflection)
Sabine RT is Ty, = 6 - In(10) o = 0.1285 “4)
The Kuttruff reverberation time depends also on the varia- transition coeff. 'diffuse-absorption' for both sides is (j=0):
tion of the absorption degrees and is even smaller than the Uaga() = 29u, = i(l + \/jz ¥q— \/(] T2+ qz)(12).

Eyring value [3]: Tsap >= Tgy >= T,
yrng 131 sab Ey Kutt Qerf = —In(1 — Uggq(0)) inserted in eq.1 instead a,y,” yields

for 0 = 1aRT Ty even longer than Tgg;, and >> Ty !
The transition coeff. from a diffuse reflection to absorption
after j geometric reflections (i.e. 'in the jth mirror room') can
be computed in a similar way (equ. 12 for j>0).

The transition coefficients are now:

A) Reverberation in a rectangular room

To enhance the chance for a semi-analytical investigation,
the problem is simplified as much as possible: a 'room' of
length L (‘floor 'and 'ceiling' totally absorbing) and height H
(front- and end walls totally reflecting and scattering

with ¢ ). Parameters are: the proportion g=H/L (typically< - ur-geo- ur-geo: Uss(k) = Up(k) - (1 = o)
. — . - ur-geo-diffuse: Usp(k) = Uy(k) - o

1 or <<1) and o (fig.1). ¢ = 1 means Lambert reflection fF Ffuse: — (1
with the probability density - diffuse- diffuse: Uaa = (1 = Ugga(®) 0

Z_g — cos(8)/2 , normalized for 2D. ) - diffuse- first time geo: Uy, = (1- Udga(O)) (1-0)
The source is in the middle. Inserting the surface S= qL?, -J- geo—j+1. geo: Ugg () = (1 — Vaga (/)) (1-0)
the circumference U = 2L(1 + q) and the mean absorption - j. geo- diffuse : Uya() = (1= Vaga()) @
degree @ = 1/(1 + q) and exp. &y’ = In(1 +1/q) to where Vaga() = Uaga()/ % Uaga() = 1/G +1) (13)

equ.1-4 yields for reference the Sabine reverberation time
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Correspondingly, the energies in the different classes win or
lose energy in every step; each iteration step can be per-
formed by a matrix multiplication involving these coeff. :
The reverberation time of the total process is computed from
the decay of the summed-up energies. Here only one result
can be shown for the typical case q=0.5 and ¢ = 0.1:

urgeonoscatt ———=T20
Urgeo-diff ~ ———TUr

a rectangular room:

total energy

LEVEL decay [dB]

. Kdiffuse
16
For this case, the S;gi[ﬂé, Eyring and Kuttruff RT are very
low (<0.2s, Ty;rr = 0.28s ) while the RT for the geom. refl.
energy (depending on the threshold where it is counted, here
at -20dB) is very much higher (1.4s, for 30dB without scat-
tering 9.36s!). Astonishingly, the RT for the urgeo, diffuse
and total energies are very similar in all cases of q as they
mutually depend from each other (here 2.15s). After a very
few reflections, they decay 'in parallel' just on different lev-
els depending on ¢. The RT in such a rectangular room dras-
tically increase with decreasing scattering coefficients of the
front walls. For 0 — 1 the RT approach Ty;¢¢ but are still
higher than according Sabine. Some num. results:

il |
02 08 1 14

o 0.05 0.1 0.25 0.5 1

RTtot | 3.1 1.8 0.85 0.49 0.28

For all g, the RT can be estimated by Tyor = Tgipr/0 8

B) Reverberation in a semi-circular room

Also here the problem is simplified as much as possible:
there are only two geometric parameter: the radius r and the
width 2b<<r of a small piece of floor around the centre (pa-
rameter g=b/r) which is totally absorbing; all other 'surfaces'
are totally reflecting , with the degree scattering ¢ (fig.4)

a=0

Fig.4. The simplified model
of the semi-circular room

a=0 v b
a=1 2

a=0
The source is close over the ground in the centre. If a 'sound
particle' hits the ground, it is either absorbed in the range

[x] < b else reflected but re-emitted from the centre.

The approach is here to ask: Which ‘effective absorption co-

efficient’ &, does a ‘sound particle’ "see” on the floor if it

is reflected from the ceiling according the scattering coeffi-
cient ¢? This is then inserted into the Eyring equ. 1

For reference again, inserting the surface S = mr?/2 and the
equiv. absorption length B = 2b into equ. 4 yields for the
Sabine rev.time Ty,, = 0.100-72/b (14)

As the first step of the analytical investigation, an approxi-
mate probability distribution for the semi-diffuse reflection

Z—z is derived from the Lambert law (equ. 5). For vertical in-

cidence and an interpolation between the geometrically and
diffusely reflected vector [4] the mixed reflection angle can
be approximated very well by y=o-9 (15)

Thus, the probability density for the mixed reflection law is
d

o = cos(y/0)/(20) (16)

(see fig.5): p'

fig.3: level decays in
<— urgeo without scatt.

/ urgeo with scatterin,

geo j.order after diff.
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semi-diffuse reflection angle probability density sigma =0.05...1

0=.05

®©o

value

-30 0
semi-diffuse reflection angle

fig.S : Sound parﬁcles scattered at the ceiling (with 6=0.25) /
approximate probability distribution for the semi-diffuse reflection
a=0

30 60

Fig.6. The absorbing part of
the floor 2b is seen from R
a reflection point R over an o=1
angle of 23; the yellow bubble

at R indicates the reduced

1
=0 LI g
a=1

Lambert probability within the

angle range of +¥,4x = 0 - 1/2
It can be (even for g<0.5 by better than 10%) approximated
(fig.6) that from a point R at an angle ¢ = — % ot % on the

ceiling the absorbing part 2b is seen over an angle of twice

B=b-cosp/r 17
on average over all ¢: Bm = 2/m-q (18)
The probability that the absorbing part of the floor is hit is
the integral over the reflection distribution:

Pa = fflfmm p'dy = sin(By/0) = %f =dery (19
This is (for ¢/ 0 <<1) at the same time the mean abs. degree
which 'a sound particle sees' after a ceiling reflection (may
be >1). The relevant 2 path lengths (from the centre to the

ceiling and back) are about A = 2r. This and a,srinserted in
2

equ. 4 yields : Tgermi = 0.1280 - % =128'0"Tep (20)

The reverberation time approaches zero with totally geo-

metric reflections of the ceiling and approaches the Sabine

value for totally diffuse reflections — both not surprising.

A sound particle simulation (3000 particles) was started for

comparison. The reverberation time Ty, was computed

from a linear regression analysis of the level decay in the

range 0...-30dB. Fig.7 shows a result of a comparison.

a=0

green: improvement without the

approxjmation of equ.19;

T30

red/dashed:| by sound particle simulation

-
T

1

< blue: approximation of equ. 20

o 0.1 0.25 0.5 1

. cgiling s.catte.ring coeff. §igrpa -
Fig.7: The reverberation time in a semi-circular room for r=10m,

b/r=0.5 as a function of the scattering coefficient of the ceiling o:
even for a wide absorbing part (Ts,, = 2s ) the agreement with
the approximation of equ. 20 is quite good, at least in tendency.

Conclusion
Such formulae remain an estimation, a study for special cases.
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