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Introduction  
The term "diffuse sound field" (DSF) is often not explained 
very accurately. In this rather didactical paper a more rigor-
ous definition is proposed and the relationships to the neces-
sary surface conditions as absorption and scattering are dis-
cussed. First, the general condition of geometric/statistic 
room acoustics is presupposed that typical room dimensions 
are large compared with wavelengths such that the analysis 
may be performed with an energetic sound particle model. 
So, ‘Intensity’ I is here interpreted as an integral over the 
whole solid angle: � � � ��Ω, a scalar rather than a vector: 
     � � � 	 (c= sound velocity, U= energy density)    (1). 
The Eyring and Sabine reverberation formulae will be re-
derived beside the mean free path length formula and the 
reason for the difference between both formulae will be ana-
lysed. Also a transition model is proposed.  

Conditions for the diffuse sound field (Table 1) 
First, it should be distinguished between  
theoretical definitions (left) and practical conditions (right), 
further between the claim the sound field should be diffuse 
'from the start' (strict version) or 'towards the end of rever-
beration'' (tolerant version, conditions in brackets): 

A)  Isotropy  C)  all absorption degrees zero ! 
  (j=const)         (mean absorption degree small) 
B)  Homogeneity  D) all surfaces totally scattering  
 (U=const)          i.e Lambert diffuse reflections
    (only some surfaces scattering)  
B2) constant    D2)  totally mixing   
       irradiation of   
       all surfaces    Table 1

Usually one starts with A (' each  
direction with same intensity / 
‘directional diffusivity’).  

From A follows B (in a room without absorption, the parti-
cles don't lose energies, see the lines connecting the clusters 
in fig. 1) [1], but not vice versa (consider e.g. the case of a 
long room evenly filled with rays just in a longitudinal direc-
tion). From B (volume condition) follows B2. The surface 
conditions  C+D are necessary but not sufficient for 
A+B!(All walls may be totally diffusely reflecting, but the 
irradiation strengths may be non-constant due to geometry.) 
If just one piece of surface is absorbing or specularly reflect-
ing (producing a mirror source) then the sound field closely 
in front will be not isotropic.  
With the Lambert reflection, the reflection angle (
) proba-
bility density p’ per solid angle is proportional ���	�
�	, in-
dependent from the incidence angle:   

   	�� �: ���� �
������
�    (2) 

It can be considered as the ideal scattering characteristics 
following from the projection law onto rough surfaces.  
If one is content with just a convergence towards a diffuse 
sound field after many reflections, then a room just with 
some scattering surfaces , hence, a little bit mixing is enough 
(and for the Sabine formula the condition that just the aver-
age absorption degree is ' small' ). Only if (fictively) the sur-
face were also interchanging positions (evenly distributed), 
i.e. totally mixing (D2), then from C+D+D2 follows A+B 
+B2 i.e. constant irradiation strength        � � �/4       (3)  
A constant B is the condition that the notion 'equivalent  ab-
sorption area'  (used to derive the Sabine formula) i.e. a sur-
face-weighting, makes sense. The factor 1/4 is due to the di-
rectional averaging over the projection factor ����
�.   
Average quantities in a DSF and conditions 
The core physical quantity is the equivalent absorption area 
     � � ∑!" #"                 (4)  

or the 'mean absorption degree' !$ ≡ α � ∑'()(
) � �/#   (5) 

(	#"= single surfaces, S= surface,  !" = absorption degrees).   
The other, the geometric average quantity, is the mean free 
path length (mfp)  with its famous formula   	Λ � 4+/#    (6) 
(V=volume),  which is true even for non-convex rooms, if a 
diffuse sound field really were given – which is, however,  
hardly the case then. The same is valid for the other relation-
ships. The correct mfp- formula can be derived strictly obey-
ing conditions A…D2 which shall be explicitly named here: 
     Method a) is utilizing  
A) isotropy in , +   B) homogeneity in V + averaging over 
the inverse mfp, i.e. reflection frequencies ('time average'):  

     Λ-. � /-.00001,�         (7) 
This way is gone with the derivation of the Sabine formula. 
In a DSF, 'sound particles' lose their identity: 'time = ensem-
ble average' [1]. Therefore the averaging can be performed 
also over a group of 'parallel' rays into an absolute direction 	
3  representative for all (fig.2).  

Λ�3� � .
4 ∑ /"4

"5. � 1/6
7/6 �

1
7�8� (8)

      The inverse of eq. 8 inserted in eq. 7 yields

                      
.
9 � :

.
9�8�;
00000000� � :7�8�< ;00000000� � )

=1      (9) 

as the directional average over all projected surface elements 
dS (also over their backsides) is dS/4. (The average cross 
section of any volume is always Q=S/4). 
     Method b) is utilizing  B2) constant irradiation of S +  
D) everywhere Lambert law + direct averaging over the 

mfp ('ensemble  average'):  	> � /	�′0000�,@     (10) 

                     > � .
) � � /�
�A�

������
� 	) �Ω�#     (11) 


 is the local angle relative to the normal. The surface inte-
gral is independent from orientation 2V and can be separat-

ed:    	> � .
�) � �ΩA� � /�
�����
��#	) � A�	A1

�) � =1
)      (12) 

Fig. 1: Isotropy and homogeneity  
        (same arrow lengths in every  
          direction everywhere) Fig. 2: A volume V of cross section Q 

subdivided into n 'channels' of cross 
section q and lengths /": q∑ /"4

"5. � +
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Re-derivation of the Eyring formula  
Typical is here to consider a ´representative sound particle` 
(sp) which, after always a free path length Λ, ‘sees’ a surface  
with the absorption degree !$. The consequence is a step-
wise exponential energy decay:  
   C�D� � CE�1 G !$�H	   (13) 
where E0 is the start energy and N is the reflection number. 
By introducing a mean absorption exponent  
   !$� � G ln�1 G !$�   (14) 
equ. 13 reads C�D� � CEK-H'L�. For N reflections with a 
free path length M, the time  N � D Λ/� is needed. Tacitly it 
is assumed that N is a real number as after a switched off 
steady sound source the decays overlap and 'smooth'  the re-
sulting function C�N� � CEK-'L

O �P/9 . Using the standard 

formulation of an exponential decay C�N� � CEK-
Q
R the time 

constant of the sound energy decay is 

      STU � 9
� 'L�

  (15) 

In such a typical RT formula, the time constant is always the 
proportion of the mean free path length and an average ab-
sorption exponent. The time for a 60dB decay is then gener-
ally V � 6 ln�10�	S. Using the normalized value of the 
sound velocity c=340m/s at 14°C and also the value for the 
mfp Λ (equ. 6) yields the Eyring reverberation time 

         VTU � Y Z[�.E�	
�

=<
)	'L�

\ 0.163	 1
)	'L�

            (16) 

Additionally (to the DSF) is assumed: condition D2 (only 
with a total mixing the sp lose their identity) and: 'the mfp 
are constant' –which is of course wrong: they are varying.   

Re-derivation of the Sabine formula  
The Sabine formula is not just an approximation of the 
Eyring formula, it has its own, amazingly different deriva-
tion. Neither the model of a sp nor the concept of a mfp is 
used. Instead, the decay of the total sound energy E(t) (one 
value everywhere!) is considered aiming at a differential 
equation. With the energy density 	U � E/V ,  I � c	U, the 
irradiation strength is   B � I/4 � cU/4 � cE/�4V�  (see 
equ.3).  Then the incident energy per time is 

    
def
dg � cE

@
�=<�      (17),      

and finally the absorbed energy :  
de
dg � GE	c

hi	@
=<  (18). 

The solution is an exponential decay with the time constant 

    τklm � 9
n	hi

       (19) 

Inserting again Λ � 4V/S yields the famous Sabine RT 

  Tklm � 6 ∙ ln	�10�	τklm \ 0.163	 <r  (20). 

As the energy is proportional the number of sound particles, 
analogously to equ. 17 the sp impact rate is 
  dN/dt � N/t � cN	S/�4V�   (21) 
(constant without absorption).  After the time for travelling 
just a mfp  t � Λ/c, all sp once have hit the room surface. 
Hence, inserting t into equ. 21 yields by the way a prove for 
the formula for the mean free path length Λ � 4V/S. 

Why is the Sabine different from the Eyring formula?  
For small !$, 	!$� � G ln�1 G !$� \ !$�1 v 'L

A �  (22),  

so comparing both formulae (equs. 15 and 19) shows that the 

difference is just in the order of   
wxy
wz{|

\ �1 G !$/2�     (23).  

The reasons for the difference are the different tacit addi-
tional assumptions. The Sabine assumption of only one en-
ergy value is absurd as this were only possible if the infor-
mation about absorption at one part of the  surface were 
spread infinitely within the room.  

Hence, with the Sabine theory there is apparently a smaller 
effective energy decay than with Eyring. 

Transitions between the two formulae  
Starting with the Eyring model, obviously one has to consid-
er the time interval between two reflections Δt � Λ/c	 more 
in detail. The first thinking model is to subdivide it. With an 
equally distributed time shift of many sound particles, the 
energy loss may be linearly interpolated, so, after a time 
Δt/n, the overall energy loss factor is �1 G α/n�; allowing 
an ‘information and energy inter change’ the energy loss af-
ter ‘1/n reflection’ would be 'equalized'. So, after a whole re-
flection – n such steps - the energy would be multiplied by  
�1 G α/n�[. For n → ∞, the loss factor between two reflec-

tions would become   	fklm � lim
[→�

:1 G h
[;
[
� e-h               (24).  

This is the Sabine energy loss factor for 1 reflection. An idea 
to describe the opposite transition is to assume that for the 
energy loss at the surface the energy (considered with the 
Sabine model) in the middle of the room is relevant. Thus 
the former diff. equ.18 with Λ � 4+/# has to be altered to  

        
��
�P � G

�	∝
9 C�N G ΔN/2�     (26) 

where ΔN � 9
� � !S���	is the half of the time interval between 

two reflections. This leads back to the Eyring RT. 

It shall be mentioned that with allowing a variance of the 
free path lengths, one returns (for a maximum variance) 
from the Eyring RT towards the Sabine value, as Kuttruff 
showed [1]. Taking into account also a variance of the ab-
sorption degrees, the  Kuttruff reverberation time is even 
smaller than the Eyring value [1]:  V��� �\ V�U �\ V��PP. 

Conclusion 
The "diffuse sound field" is a very idealistic assumption- 
The reasons for the difference between the Sabine and the 
Eyring formula are different tacit additional assumptions. 
Both are wrong. So, strictly speaking, they must not be ap-
plied in many cases of non-perfectly diffuse reflections  i.e. 
in many realistic cases. The RT in non-diffuse sound fields 
depend on the room shape, the distribution of the absorption 
and especially the scattering coefficients � [2]. 
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Fig.3: If SP1 hits wall S1,the total en-
ergy E in the room is reduced. Tacitly 
assumed by Sabine, this information is 
transmitted immediately to SP2 such 
that its energy is also reduced. Then its 
future energy loss due to absorption on 
wall S2 will be smaller than otherwise.  
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