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Introduction

Since audio playback techniques have extended to a pair
of loudspeakers for stereo, strategies for making sounds
appear from adjustable locations has been a driving idea
in mixing of audio signals. Mixing consoles have been
equipped with so-called panning knobs that distribute
single audio signals accordingly to a pair of loudspeakers,
or even five pairs in surround.

We lengthly discussed Ambisonics as a surround play-
back technique at various levels of complexity in [1] and
revisited its simple interpretation as a panning technique
for spherically surrounding loudspeaker arrangements,
cf. [2]. Thereby, we introduced energy preserving Am-
bisonics. This contribution neatly and compactly reca-
pitulates the main finding of how to enforce a constant-
energy constraint using Ambisonics, from a more general
perspective.

Within this article, we define the Cartesian direction vec-
tor as θ = [cos(φ) sin(ϑ), sin(φ) sin(ϑ), cos(ϑ)]

T
with φ

and ϑ being the azimuth and zenith angle, respectively.

Amplitude panning

Amplitude panning distributes an audio signal s(t) to
l = 1, 2, . . . ,L loudspeakers at the directions θl using the
panning functions gl(θs)

xl(t) = gl(θs) s(t). (1)

Suitable panning functions create the impression of a sin-
gle sound event at the direction θs.

Gathered in a vector g = [g1(θs), . . . gL(θs)]
T, panning

functions are usually constrained to constant “energy”
∥g∥2 = 1. This is easily achieved from any unnormalized
g̃ by

g =
g̃

∥g̃∥
(2)

what largely ensures a direction independent loudness
and works well for vector base amplitude panning, cf. [3]
and also for Ambisonic panning.
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Figure 1: Panning function of the order N = 5 plotted as
balloon diagram (a) without and (b) with smoothing.

Ambisonic panning

The simplest form of Ambisonic panning functions of the
(maximum) order N is

g̃l(θs) =
4π

L

N∑
n=0

n∑
m=−n

wn Y
m
n (θl)Y

m
n (θs), (3)

where wn are optional order weights and Y m
n (θ) are the

real-valued spherical harmonics (SHs) defined as

Y m
n (θ) = N |m|

n P |m|
n (cosϑ)

cos(mφ) , for m ≥ 0

sin(mφ) , for m < 0.

In the above equation, P
|m|
n denotes the associated

Legendre function, and N
|m|
n is the scalar energy-

normalization of the SHs.

Fig. 1 depicts the panning function of order N = 5 for
a loudspeaker located at the zenith, (a) without weights
wn and (b) with weighting resulting in an attenuation of
its side lobes. There are different weighting functions1

available. However, weighting it is not considered here
for simplicity.

Eq. (3) is reformulated to a vector product ,g̃l(θs) =
4π
L yT

N(θl)yN(θs), with yN(θ) := [Y m
n (θ)]q=1...(N+1)2 us-

ing the linear index q = n2 + n + m + 1. Similarly, the
vector-valued panning function is expressed as

g̃ = Y T
N yN(θs) (4)

with the matrix YN := 4π
L [yN (θl)]

l=1...L. The Ambisonic
panning functions are smooth Nth order spherical func-
tions, see Fig. 1, but generally not normalized for ar-
bitrary loudspeaker setups. Normalization according to
Eq. (2) tends to increase the order of the panning func-
tion, thus the variability with regard to the panning di-
rection θs. This is avoided by the approach presented in
the following section.

1Literature on Ambisonics mainly discusses two types of weight-
ing: max-rE and in-phase, cf. [2, 4].
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Constant energy

The vector norm
∥∥yN(θs)

∥∥ = N+1√
4π

of the vector in

Eq. (4) is constant. Consequently, a constant energy
constraint is met if YN is an orthogonal matrix, i.e.
YN Y T

N = Y T
N YN = I . However, this is only the case

when using four loudspeakers arranged on the vertices of
a tetrahedron and N = 1.

Generally, the singular value decomposition (SVD) re-
veals energy scaling factors in YN , as it factorizes the
matrix

YN = USV T , (5)

into U(N+1)2×(N+1)2 and VL×L, two orthogonal matrices,
and S = diag(N+1)2×L{s}, a diagonal matrix containing
the singular values. The energy is

∥g̃∥2 = yT
N(θs) U diag{s}2 UTyN(θs), (6)

and it is obviously only scaled by diag{s}2. Constant en-
ergy ∥g∥2 = 1 would be conveniently achieved by Eq. (2)
or an approach that manages to enforce diag{s}2 =

4π
(N+1)2 I.

As a solution we formulated a new Ambisonic panning
function in [1]

g =
√
4π

N+1 V UT yN(θs) , (7)

If L ̸= (N + 1)2, the column size of the bigger matrix
(either U or V ) must be truncated. If there are at least
(N + 1)2 loudspeakers, the constant energy constraint
∥g∥2 = 1 is fulfilled for every direction θs.

Ambisonic panning for partially surrounding loudspeak-
ers, cf. [5], uses spherical Slepian functions instead of
SHs, cf. [6]. The constant energy approach described
above can be applied similarly for panning with these
functions.

Example

Ambisonic panning with constant energy is exemplarily
shown for 17 loudspeakers arranged on the grid of an 18-
nodes equal area partitioning [7]. The 9th node is left
free to disturb the uniformity of the setup.

Fig. 2(a) shows ∥g(θs)∥2 according to Eq.(4) for an Am-
bisonic order of N = 3; the loudspeaker positions are
indicated by the black crosses. The energy decreases sig-
nificantly if the panning direction is close to the position
of the omitted node. Constrained Ambisonic panning
functions are depicted in Fig. 3 for the five horizontal
loudspeakers of the exemplary setup, for panning on the
equator. The directly normalized functions of Fig. 3(a)
are obviously of higher order than 3 and exhibit a strong
variation around 150◦, the location of the omitted node.
By contrast, Fig. 3(a) shows the smooth 3rd order pan-
ning of Eq. (7).
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Figure 2: Energy of the panning function ∥g∥2 depending
on the panning direction θs, (a) for Ambisonic panning and
(b) including a constant energy constraint.
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Figure 3: Ambisonic panning functions for a horizontal angle
φ for the horizontal loudspeakers of the example arrangement:
(a) according to Eq. (2) and (b) according to Eq. (7).

Conclusion

We have briefly summerized our new Ambisonic panning
function with an constatn energy constraint. In contrast
to simple normalization, the new approach yields smooth
Nth order panning functions. Because of its smoothness,
it yields good results for sounds moving in space, in par-
ticular.
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