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Introduction

Directivity patterns can only be measured at discrete
directions. In many cases, the sound pressure between
the measurement points is also of interest. Directivity
patterns are assumed to be smooth, hence permit ap-
proximation with spherical harmonics of limited order.
Spherical harmonic approximation is well-behaved if dis-
crete measurements are available for sufficiently many,
uniformly spaced directions. However, if the measure-
ments cover only a limited range of directions, e.g. the
half space, spherical harmonic approximation becomes
inaccurate or ill-posed.

Spherical Slepian functions are useful for approximating
measurement data that are available only for a limited
range of directions. This contribution shows how to ob-
tain suitable spherical Slepian functions from the spher-
ical harmonics. Applying these functions yields accurate
and well-posed approximation within the measured an-
gular range. Such Slepian functions are also applicable
in Ambisonics, cf. [2], directional source descriptions in
spatial audio, and head related transfer functions.

Spherical harmonics expansion

Within this article, we define the Cartesian direction vec-
tor as θ = [cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ)]T with ϕ

and ϑ being the azimuth and zenith angle, respectively.

A continuous angularly band-limited function on the
sphere p(θ) can be expressed by a series expansion,

p(θ) =

N
∑

n=0

n
∑

m=−n

Y m
n (θ) ψnm, (1)

where ψnm are the expansion coefficients and

Y m
n (θ) = N |m|

n P |m|
n (cosϑ)











cos(mϕ) , for m ≥ 0

sin(mϕ) , for m < 0

are the spherical harmonics (SHs) of order n and degree

m; P
|m|
n denotes the associated Legendre function, and

N
|m|
n is the scalar energy-normalization of the SHs. The

double sum in Eq.(1) is equivalently expressed by a vector
product

p(θ) = yTN(θ) ψN, (2)
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where yN(θ) := [Y m
n (θ)]q=1...(N+1)2 and ψN =

[ψm
n ]q=1...(N+1)2 with the linear index q = n2+n+m+1.

The first step for decomposition into SHs is done by mul-
tiplication of Eq.(2) with yN(θ) and integration over the
unit sphere S

2

∫

S2

yN(θ) p(θ) dθ = G ψN, (3)

where G =
∫

S2
yN(θ) y

T
N(θ) dθ. The second step is the

inversion of G. It is not required here as the SHs are
orthonormal functions on the unit sphere, i.e. G = IN.

Discrete SHs expansion

Typically, measurement data is only available at L dis-
crete directions. Therefore it is necessary to formulate
a discrete SHs expansion. We define a vector p :=
[p(θl)]l=1...L containing the measured values and a matrix
YN := [yN (θl)]

l=1...L containing the angularly sampled
SHs at the measurement directions θl, and with that the
discrete equivalent of Eq.(2) is expressed as

p = YN ψN. (4)

Similarly as above, the first step for decomposition is
done by multiplication with Y T

N from the left,

Y T
N p = G ψN, (5)

with G = Y T
N YN Obviously, the second decomposition

step requires the inverse of G to exist and to be numer-
ically stable. Normally, this is no problem for measure-
ment positions that are uniformly distributed, cf. [3], and
sufficiently many L ≥ (N + 1)2 to enable a full rank.

However, if the measurements cover only a limited range
of directions, e.g. the half space, the inversion of G is
numerically rank-deficient. As shown in the following,
this defect already exists when decomposing continuous
functions on a part of the sphere.

SHs expansion on parts of the sphere

The first step of decomposing a continuous function p(θ)
on a limited range of directions S2 ⊂ S

2 is done by
∫

S2⊂S2

p(θ) yN(θ) dθ = GψN, (6)

with G =
∫

S2⊂S2
yN(θ) y

T
N(θ) dθ 6= IN . In general, the

inversion of G is numerically rank-deficient. This be-
comes apparent by eigendecomposition:

G = U diag{[σi]1...(N+1)2} U
T, (7)
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Figure 1: (a) shows eigenvalues according to Eq.(7) for SHs of m = 0 and n ≤ 11 for ϑ limited within [22.5◦, 157.5◦], (b)
depicts the corresponding basis functions according to Eq.(8) of which 1–9 were chosen as Slepian functions, and (c) is the
approximated directivity using such functions for all m, cf.[1].

where U is an orthogonal matrix containing the eigen-
vectors and σi are the corresponding eigenvalues. The
eigenvalues of G decay gradually to zero as exemplarily
sketched in Fig.1(a).

Spherical Slepian functions

Applied on the SHs, the eigenvector matrix U yields an
orthogonal set of basis functions on S2

vN(θ) = U yN(θ) (8)

that allows for an expansion of p(θ) that is equivalent to
its SHs expansion

p(θ) = vTN(θ) νN , (9)

where νN = U ψN are the new expansion coefficients.
The first step of decomposition yields then

∫

S2⊂S2

p(θ)vN(θ) dθ = GνN , (10)

with a diagonal matrix G =
∫

S2 vN(θ) v
T
N(θ) dθ =

diag{[σi]i=1...(N+1)2}. Each of the basis functions vi(θ)
exhibits a concentration on S2 that is proportional to its
singular value σi.

A selection of functions ṽN(θ) = [vi(θ)]i=1...M that are
sufficiently concentrated on S2 defines the Slepian func-
tions, cf. [4]. A suitable constant C is used to separate the
Slepian functions from the functions concentrated outside
S2, by the condition σi > C . The decomposition into
Slepian functions is then numerically stable

ν̃N = diag

{[

1

σi

]

i=1...M

}
∫

S2⊂S2

p(θ) ṽN(θ) dθ. (11)

The expansion of discrete measurement data into Slepian
functions is done similarly as in Eqs.(4) and (5) but using
the Slepian functions instead of the SHs. In doing so, the
matrixG = Ṽ T

N ṼN appearing in Eq.(5) becomes regular
for a uniformly discretized S2.

Example

Slepian functions were applied to approximate directivity
measurements of a super cardioid microphone with the
influence of a talker’s head, cf. [1]. The directivity was
measured in 15◦ steps, in both azimuth and zenith angle.

This allows for SHs approximation up to N = 11. How-
ever, the measurement grid covered zenith angles from
30◦ to 150◦, only, i.e. data on the polar caps is missing.

A Slepian basis can be found for each degree m in-
dividually because only the zenith angle is restricted.
Fig.1(a) shows the eigenvalues σi corresponding to spher-
ical Slepian functions for m = 0 restricting the zenith an-
gle according to the measurement gird. Fig.1(b) shows
the associated basis functions vN. The basis functions
with eigenvalues close to 1 are suitable for decomposi-
tion. In [1] we used the Slepian functions with σi > 0.5
for decomposition, i.e. the functions 1–9 in Fig.1(b) for
m = 0. The functions for the other degrees are con-
structed similarly. Fig.1(c) exemplarily demonstrates the
approximation of a measured directivity pattern.

Conclusion

A uniform distribution of measurement points on a lim-
ited angular region, e.g. the half space, does not allow
a numerically stable decomposition into SHs. This de-
fect also appears for the continuous SHs if the range of
directions is limited, as they become linearly dependent.
Re-orthogonalization of the SHs allows to remove the lin-
ear dependencies. The Slepian functions are defined by
omitting those orthogonalized SHs that are negligible in
the region of interest. This provides a continuous ap-
proximation tailored to the range of directions covered
by the measurement grid.
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