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Abstract

The segregation of concurrent speakers and other sound
sources is an important ability of the human auditory
system but is missing in most current systems for au-
tomatic speech recognition (ASR). This study combines
processing related to peripheral and cortical stages of the
auditory pathway: A physiologically-motivated binaural
model estimates the positions of moving speakers to en-
hance the desired speech signal. Secondly, signals are con-
verted to spectro-temporal Gabor features that resemble
cortical speech representations. Binaural processing im-
proved recognition results in all acoustic conditions under
consideration compared to single channel processing. In
noisy situations Gabor features perform best, while in
clean situations normalized mel-frequency cepstral coef-
ficients should be preferred. A simple decision rule based
on the estimated target-to-noise ratio is proposed to se-
lect the best processing chain for the particular acoustic
scene, which results in a relative improvement of 30.2 %
of error rates on average compared to the baseline.

Introduction

The human auditory system is able to easily analyze and
decompose complex acoustic scenes into its constituent
acoustic sources. This requires the integration of a mul-
titude of acoustic cues, a phenomenon that is often refer-
red to as cocktail-party processing. Auditory scene ana-
lysis (ASA), especially the segregation and comprehen-
sion of concurrent speakers, is one of the key features
in cocktail-party processing [1]. While most of today’s
ASR systems do not incorporate features estimated from
the acoustic scene (such as prior information about the
room or the position of speakers), this paper investiga-
tes auditory-inspired methods to enhance and optimally
represent speech signals recorded by hearing aid micro-
phones. ASR is performed with this system operating in
complex acoustic scenes, resembling an application sce-
nario in which transcripts of spoken language could be
provided to hearing-impaired listeners. Auditory proces-
sing is integrated at two stages in the system, mimicking
strategies corresponding to peripheral or central audito-
ry processing: (A) A binaural model [2] extracts inter-
aural phase differences (IPD) and interaural level diffe-
rences (ILD) to achieve robust direction of arrival (DOA)
estimation of multiple speakers. In scenarios with one or
two active speakers, we use these DOA estimations to
steer a beamformer to enhance the signal of the desired
sound source, which has been shown to improve ASR per-

formance significantly [9]. (B) Complex
”
cortical“ ASR

features serve as input to the classification system. In
this study we use a Gabor filter bank to extract spectro-
temporal Gabor features for ASR (Schädler et al. [7], [6]).
These features have been shown to increase the robust-
ness of ASR with respect to several additive noise types.
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Abbildung 1: Block diagram of the experimental setup.
TNR stands for target-to-noise ratio (see section

”
Scene-

specific feature selection“).

Figure 1 shows a block diagram of the whole processing
chain. Acoustic scenes are simulated by convolving si-
gnals with recorded 6-channel head-related impulse re-
spones (HRIR) (3 channels from each of two behind-the-
ear (BTE) hearing aids). In the binaural processing step,
the signals of the front microphones are fed into the bin-
aural model that is employed to estimate the direction of
arrival of spatially distributed speakers. A particle filter
is then used to keep track of the positions of the moving
sources. Its output is used to steer a beamformer, enhan-
cing the 6-channel speech signal that is to be transcribed
by an HMM-GMM ASR system employed using HTK.
For monaural processing, each channel is processed in-
dependently - see [9] and [8] for more details, especially
regarding the ASR system parameters.

Results

In this section we present the results obtained by the pro-
posed binaural system. An application scenario is to use
such a system in hearing aids, providing a transcript of
spoken language in complex acoustic scenes to hearing-
impaired listeners. Signals recorded with six hearing aid
microphones are used as input. Single-channel (or mo-
naural) processing serves as baseline, for which the six
channels are separately processed and the corresponding
word error rates are averaged.

Binaural vs. monaural processing

We first compares the word error rates (WERs) obtai-
ned with binaural and monaural processing using cortical
Gabor features with cepstral mean and variance norma-
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lization (CMVN). In presence of a diffuse noise (1S,DN)
at -5 and 0 dB TNR, the binaural processing scheme is
slightly worse than monaural processing, but at all other
TNRs, binaural processing is outperforms monaural pro-
cessing. For the localized noise scenario, binaural proces-
sing improves ASR performance at low TNRs, i.e. -5 to 5
dB, whereas at higher TNRs monaural processing has a
slight advantage. In situations with a concurrent speaker
(2S), the binaural processing performs better than the
monaural processing at all TNRs. However, when ave-
raging over all situations, binaural processing strongly
increases ASR performance from 25.4 % to 18.9 % WER.

Cortical Gabor features vs. MFCCs

The properties of features inspired from processing in
higher stages of the auditory pathway are analyzed by
comparing Gabor features with baseline features. MFCCs
with cepstral mean and variance normalization (CMVN)
serve as baseline. Since the binaural processing resulted
in best results in most conditions, we present results for
both feature types combined with the binaural system.
Gabor features outperform the baseline features in the
presence of noise. However, in the two-speaker scenario
or in clean conditions MFCCs perform better than Gabor
features. The average WER over all situations is almost
identical for Gabor and MFCC features, namely 18.9 %
compared to 19.0 %, respectively.

Scene-specific feature selection

The comparison of Gabor and MFCC features showed
that each feature type appears to be optimal for speci-
fic acoustic conditions. In an oracle experiment in which
the best system for the given condition was selected (ba-
sed on prior information that is not available in a real-
world scenario), the WER was reduced to 17.8 %. Due to
the complementarity of spectro-temporal Gabor features
and MFCCs, it would be desirable to perform feature
selection without such a priori information in order to
approach the performance of the oracle system. In this
study, a simple decision rule based on the estimated TNR
is proposed to perform the selection: In each subband the
noise level is calculated as a weighted average of spectral
magnitude values of the past 50 ms which are below an
adaptive threshold[4]. To obtain an estimate of the clean
speech signal, the well-established noise reduction algo-
rithm by Ephraim & Malah estimating the optimal mini-
mum mean square error (MMSE) log short-time spectral
amplitude (log-STSA) is used [3] (see [5] for details on the
algorithm). The energy of the estimated clean speech si-
gnal is then compared to the energy of the estimated noi-
se which results in the estimated TNR. Since the system
operates on six BTE hearing aid microphones, monaural
processing of these microphones serves as a baseline in
this study and is carried out by processing each of the
six channels independently and averaging the word er-
ror rates of the ASR system (see Fig. 2). The combined
system improves ASR performance in all situations, the
only exception being (1S,LN) for clean condition. In to-
tal, the combined system achieved a word error rate of
17.7 % which corresponds to a relative improvement of
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Abbildung 2: Word error rates for the combined system and
the baseline system for all situations.

30.2 % compared to the baseline.
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