Wellenleitung im eindimensionalen Festkörper

O. Bschorr Aeroakustik, Stuttgart

Zusammenfassung.

Da die Cauchy'sche Kräftebilanz deviatorische Festkörperkräfte nicht erfasst, wurde diese – hypothetisch – durch eine Impulsbilanz ersetzt. Die aus dieser Hypothese resultierende Impulsgleichung s° \pm cs' = 0 ist mit in der konventionellen Kräftegleichung s°° - c²s'' = 0 enthalten. Tatsächlich liefern beide Formeln für den homogenen Wellenleiter identische Planwellen und auch identisches Fernfeld bei Kugelwellen. Nicht zuletzt besteht auch Übereinstimmung bei Saiten- und Biegewellen.

Einleitung.

Die konventionelle, auf einem Kräftegleichgewicht beruhende 1. Cauchy'sche Bewegungsgleichung lieferte bei Deviationswellen nur triviale Null-Lösungen. Deswegen wurde in [1] hypothetisch die Kraftbilanz durch eine Impulsbilanz ersetzt. Aufgabe ist, das hypothetische Impulskonzept auch auf den (quasi)eindimensionalen Wellenleiter zu übertragen. Damit sollen der Wellenverlauf und die Eingangsimpedanz von unterschiedlichen 1D-Leiter bereitgestellt werden, um die Nachprüfung zu erleichtern.

Eindimensionale Wellenleitung.

Wellenleiter. Zugrunde liegt ein gerader durch die Koordinate x [m] festgelegter 1D-Longitudinalwellenleiter. Der Querschnitt A = A(x) [m²], die Dichte $\rho = \rho(x)$ [kg/m³] und die Phasengeschwindigkeit c = $\omega/k = c(x)$ [m/s] des Wellenleiters sind im allgemeinen Fall x-abhängig. Vorausgesetzt wird die Stetigkeit der Funktionen (#) = {A, ρ , c; E, D, R, s} und deren Ableitungen (#)' = d(#)/dx. Die Werte am Eingang x = 0 seien (#)₀. Zurückgegriffen wird auch auf die redundanten Größen Elastizitätsmodul E = ρc^2 [Pa] und charakteristischer Leiterdurchmesser D ~ \sqrt{A} [m]. Eine in +x-Richtung laufende Longitudinalwelle mit dem Ausschlag s = s(x,t) = a exp i($\omega t - kx$) [m] ist durch den Amplitudenvektor a = a(x) [m], die (Kreis) frequenz ω [rad/s] und die bei einem Verlustfaktor η [-] komplexe Wellenzahl k = k(x) \rightarrow k(1 + i η) = 2 π (1 + i)/ λ [rad/m] festgelegt. (λ [m] = Wellenlänge, i = $\sqrt{-1}$)

Wellenkrümmung. Kugel-Koordinate. Beim Wellenleiter mit A = const besteht eine plane Wellenfront mit dem Krümmungsradius R $\rightarrow \infty$ [m]. Im allgemeinen Fall mit A \neq const hat der Amplitudenvektor **a** = at eine Winkelablage gegenüber der x-Achse. Nach der Gauß-Theorie der äquidistanten (Phasen)Flächen [4, S. 218] liefert der Tangentenvektor t [-] die lokale Krümmung 1/R = 1/R(x) [1/m] der Wellenfront

$$1/R = \operatorname{div} \mathbf{t} \qquad \mathbf{t} = \mathbf{a}/a \qquad (1)(2)$$

Zusätzlich ist in Fig. 1 die Krümmung 1/R auf die Geometrie des Wellenleiters zurückgeführt. Für den "schlanken" Leiter mit tg $\alpha_1 = \text{tg } \alpha_2 \rightarrow 0$ und (#)'/(#) << k und D << $\lambda/2$ kann die Näherung benützt werden:

$$1/R \approx D'/D = \frac{1}{2}A'/A$$
 Für tg $\alpha_1 = tg \alpha_2$ (3)(4)

Fig. 1: Quasi-1D-Wellenleiter. An der Stelle x mit dem Durchmesser D bestehe eine Kugelwelle mit Radius R [m] und dem Zentrum Q. Mit R \equiv r wird ein konzentrisches, sphärisches Koordinatensystem r [m] eingeführt. Die Forderung tg α_1 = tg α_2 setzt im Bereich von x bis x + Δ x eine Kugelwelle mit Zentrum in Q voraus. Mit dem Grenzübergang $\Delta D/\Delta x \rightarrow dD/dx = D'$ wird der Kugelradius R $\approx D/D'$.

Wellenleitung nach dem Impulskonzept. Während die konventionelle Bilanz auf der Krafteinheit Newton mit der Dimension $[N = mkg/s^2]$ beruht, wird hier – hypothetisch – und die Bezeichnung der KPK-Schule Karlsruhe übernehmend der Impuls mit der Bilanzeinheit Huygens [Hy = mkg/s] herangezogen. Dazu wurde in [1] für den 3D-Leiter das tensorielle Gleichgewicht von kinetischem und potentiellem Impulsfluss aufgestellt. Beim 1D-Leiter reduziert sich die Tensor- auf eine Skalar-Gleichung und bei planer Welle mit 1/R = 0 bilden in linearer Näherung s° << c der kinetische ρ cs° [Hy/sm²] und der potentielle Impulsfluss (Es)' die Bilanz $\rho cs^{\circ} -/+ (Es)' = 0$. Bei Wellenfronten mit einer lokalen Krümmung 1/R wird der kartesische Gradient (Es)' durch den sphärischen Gradienten (ERs)'/R ersetzt und die Hypothese eingeführt, dass im 1D-Leiter kinetischer Impulsfluss pcs° und potentieller Impulsfluss (ERs)'/R das lokale Gleichgewicht bilden.

$$\rho c s^{\circ} - /+ (ERs)' / R = 0$$
 (5)

Die Vorzeichen -/+ kennzeichnen die positive und negative Laufrichtung der Welle. Wird der E-Modul nach $\rho c^2 = E$ und für die monofrequente Welle die Schnelle nach s° = ds/dt = $i\omega s = iks/c$ [m/s] eingeführt, so kommt man auf das direkt integrierbare logarithmische Differential #'/# = [ln #]'.

$$ik = +/- (ERs)'/(ERs) = +/- [ln (ERs)]'$$
 (6)

Mit der Integrationskonstanten C+ für die in +x-Richtung und mit C. für die in Gegenrichtung laufende Welle folgt aus (6) die zeitabhängige Wellengleichung (7)

$$s(x,t) = (C_{+}/ER) \exp i(\omega t - \varphi) + (C_{-}/ER) \exp i(\omega t + \varphi)$$
(7)

Deren Vorrang entsprechend wurden für die Phasenwege eigene Symbole eingeführt. Die Phase zwischen 0 und x sei φ [rad] und die bis zum Leiterende bei x = L [m] sei Φ [rad]

$$\varphi := \varphi(\mathbf{x}) = \int_0^x k dx \qquad \Phi = \int_0^L k dx \qquad (8)(9)$$

Bei einer Diskontinuität an der Stelle x = L kommt es zu einer Reflexion und der Überlagerung $s = s_{+} + s_{-}$ von hin- s_{+} und rücklaufender s. Welle. Haben beide Wellen bei x = L die Ausschläge s₊(L) und s.(L) so bestimmt das Verhältnis Θ [rad] zusammen mit Φ die Amplitude C. der reflektierten Welle. Spezielle Fälle sind das verlustfreie, "schallweiche" Ende mit $\Theta = 0$ und das verlustfreie, "schallharte" Ende mit $\Theta = \pi$.

$$\exp i\Theta = s_{+}(L)/s_{-}(L)$$
 $C_{-} = C_{+} \exp i(2\Phi + \Theta)$ (10)(11)

Die beiden Laufwellen mit der Amplituden-Relation (10) und mit der auch für komplexe Phasen γ gültigen Beziehung cos γ = ½(exp i γ + exp -i γ) addiert, ergibt das stehende Wellenfeld (12). Bei schallweichem Ende Θ = 0 erfährt die Erregerkraft F = E₀A₀(s')₀ [N] die Impedanz Z₀ = F/(s°)₀ [kg/s] (13)

$$s(x,t) = 2 (C_{+}/E) [\cos (\Phi + \Theta/2 - \phi)] \exp i(\omega t - \Phi - \Theta/2)$$
 (12)

(13)

$$Z_0 = \rho_0 c_0 A_0 \text{ tg } i\Phi$$

Bei Re{ Φ } = $\pi/2 = \Phi_R$ erkennt man im Impedanz-Maximum Z_R die 1. Resonanz und bei Re{ Φ } = $\Phi_A = \pi$ das Minimum Z_A der 1. Anti-Resonanz. Beim Leiter mit kleinem Verlustfaktor η liefert die Näherung tg $\eta \Phi \approx \eta \Phi$ die resistiven Impedanzen

$$Z_{\rm R} \approx \rho_0 c_0 A_0 (2/\pi \eta)$$
 $Z_{\rm A} \approx \rho_0 c_0 A_0 (\pi \eta)$ (14)(15)

Beim homogenen Leiter mit k = const ist $\Phi = \int_0^L k dx = kL$. Bei Resonanz mit $\Phi_R = \pi/2$ besteht mit $L = \lambda/4$ der bekannte $\lambda/4$ -Schwinger und bei Anti-Resonanz ein $\lambda/2$ -Schwinger. – Kurze Leiter mit $L \ll \lambda$ haben die Näherung tg i $\Phi = \text{tg ikL} \approx$ ikL und damit die rein imaginäre Impedanz $Z_0 \approx i \omega \rho_0 A_0 L$ und entspricht der Reaktanz der Leitermasse $\rho_0 A_0 L$.

Sowohl theoretisch als auch experimentell ist der Krümmungsradius R der Wellenfront schwieriger zu erfassen. Für eine Nachprüfung wird deshalb auf die Planwelle mit 1/R = 0und auf Kugelwellen mit R = x eingeschränkt. Auch bei Saiten- und Biegewellen ist die Krümmung nicht relevant.

Zylindrischer Wellenleiter.

Bei einem 1D-Leiter mit konstantem Querschnitt A = const besteht eine Planwelle und bei homogenem Medium ρ ,c = const reduziert sich das allgemeine Impuls- Gleichgewicht (5) auf (16) und die einfache Integration liefert die Laufwelle (17)

$$s^{\circ} - t + cs' = 0 \longrightarrow s = s_0 \exp i(\omega t - t + kx)$$
 (16)(17)

Die Eingangs-Impedanz $Z_0 = F/(s^\circ)_0$ mit der Erregerkraft $F = A_0E_0$ (s')₀ [N] kann auch direkt aus (16) abgeleitet werden

$$Z_0 = E_0 A_0 / c_0 = \rho_0 c_0 A_0 \tag{18}$$

Demgegenüber lautet für diesen Leitertyp das klassische Cauchy'schen Kräftegleichgewicht: s^{oo} - c²s'' = 0. Während bei der Kräftebilanz die Beschleunigung s^{oo} = d²s/dt² [m/s²] eingeht, ist für den Impuls die Geschwindigkeit s^o = ds/dt ausreichend. Dasselbe gilt für die räumliche Differentiation. Trotz der Unterschiede s^o↔s^{oo} und s'↔s'' liefern beide Formeln identischen Wellenverlauf und identische Impedanz.

Konischer Wellenleiter.

Beim konischen Wellenleiter mit der Schallquelle und dem Koordinaten-Ursprung in der Kegelspitze besteht eine Kugelwelle mit einem Krümmungsradius R gleich dem Quellabstand x = R. Damit lässt sich direkt das Impulsgleichgewicht (19) und die Wellengleichung (20) anschreiben

$$s^{\circ} - t c(sx)'/x = 0 \rightarrow s = (C/x) \exp i(\omega t - t kx)$$
 (19)(20)

Das Kräftekonzept (21) verwendet zusätzlich das Geschwindigkeitspotential $s^{\circ} = -$ grad S und hat die Lösung (23):

$$(xS)^{\circ\circ} - c^2(xS)^{\prime\prime} = 0$$
 grad $S = -s^{\circ}$ (21)(22)

 $s = C(1/x + i/kx^2) \exp i(\omega t - / + kx)$ (23)

Im Fernfeldterm C/x stimmen beide Lösungen (20) und (23) überein. Im Nahfeld jedoch besteht die Differenz iC/kx^2 .

Spezielle 1D-Wellenleiter

Saitenwelle. Bei einer Saitenschwingung mit dem transversalen Ausschlag s stellt der Term Apcs^o [H/s] den kinetischen und der Term (Ps)' [H/s] den potentiellen Impulsfluss dar und bilden das Gleichgewicht (24). Bei konstantem Horizontalzug P [N] erhält man die bekannte Gleichung für die Saitengeschwindigkeit $c_s = \sqrt{(P/\rho A)}$.

Apcs^o -/+ (Ps)' = 0
$$c_s = \sqrt{(P/\rho A)}$$
. (24)(25)

Biegewelle. Beim Biegewellenleiter lautet die Impulsbilanz (26) und liefert bei Homogenität mit A, ρ ,E,J = const die bekannte Biegewellengeschwindigkeit c_B (27)

Apcs^o -/+ (EJs'')'= 0
$$c_{\rm B} = \sqrt{\sqrt{(\omega^2 EJ/A\rho)}}$$
 (26)(27)

Cochlea-Wellenleiter. Ausgegangen wird von dem vereinfachten Leiter-Modell nach [2,3] mit konstantem Querschnitt A, konstanter Dichte ρ und der orts- und frequenzabhängigen Wellengeschwindigkeit c=c(x, ω)

$$c = \sqrt{[(\Omega^2 - \omega^2 + i\eta\Omega\omega)F]}$$
 $\Omega = \Omega_{Max} \exp hx$ (28)(29)

Die innerhalb des Hörbereichs von Ω_{Min} bis Ω_{Max} [rad/s] liegenden Eigenfrequenzen $\Omega = \Omega(x)$ der Basilarmembran BM sind gemäß (29) logarithmisch über die BM-Länge L verteilt. Der Parameter F \approx HA/B [m²] enthält Breite B, Höhe H von BM und die Leiterfläche A. Gefragt ist die Eingangsimpedanz Z_0 am ovalen Fenster OF bei x = 0. Dazu wird auf F = const vereinfacht, der BM-Verlustfaktor η vernachlässigt und die Resonanzsingularität bei $\Omega = \omega$ mit c $\rightarrow 0$ als ein freies Ende an der Stelle $x_{\Omega} \leftrightarrow L$ interpretiert. Das so vereinfachte Modell mit k = ω/c elementar integriert, hat den Phasenweg Φ

$$\Phi = \int_0^{x\Omega} k dx = \pi/2 h \sqrt{F} - (\arcsin \omega/\Omega_{\text{Max}})/h \sqrt{F} \qquad (30)$$

Nicht nur aus Platzgründen wird angenommen, dass die Evolution den ω -abhängigen, 2. Term unterdrückt, den rein leiterspezifischen 1. Parameter $h\sqrt{F}$ [-] vorzieht und dass dieser via aktiver Cochlea verstellbar ist. So gewährleistet die Einstellung $(h\sqrt{F})_R = 1$ das Phasenintegral $\Phi = \pi/2 \rightarrow \Phi_R$ und nach (14) am OF das resonante Impedanz-Maximum $Z_R \sim 2/\pi\eta$. Das anti-resonante Minimum $Z_A \sim \pi\eta$ liegt bei der Einstellung $(h\sqrt{F})_A = 0,5$. Eine aktive Verstellung des Parameters $h\sqrt{F}$ um den Faktor 2 reicht so aus, um simultan über den gesamten Hörbereich $\Omega_{Min} < \omega < \Omega_{Max}$ eine Dynamik $Z_R/Z_A = 2/(\pi\eta)^2$ zu generieren Bei einem durch die aktive Cochlea eingestellten Verlustfaktor $\eta \rightarrow \eta_{akt} = 0,001$ bestreitet ein solcher Effekt fast die Hälfte der 120 dB-Gehördynamik.

Quellen.

- [1,2,3] O. Bschorr: DAGA. Fortschritte Akustik. [1] DAGA '14 S. 80; [2] DAGA '14 S. 411. [3] DAGA '13 S. 172
- [4] M. Lagally, W. Franz: Vorlesungen über Vektorrechnung. Akad. Verlagsgesellschaft. Leipzig (1964).