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2 Adam Opel AG, 65423 Rüsselsheim, GermanyIntrodutionNowadays ars are equipped with various di�erent sen-sors, e.g., radar or ultrasoni sensors for distane mea-suring and parking assistane, ameras for light-ontrolor lane departure alerting, tra� sign reognition et.Aousti sensors �nd their way into ars mainly for au-tomati speeh reognition (ASR) for in-ar ommunia-tion, entertainment and navigation systems [1℄. However,aoustial sensors are apable of reognizing many morear-related events like sirens [2℄ and ar horns [3℄, lanedeparture, road or tire onditions, engine failures, bro-ken or worn hassis parts, loose parts, broken tie rods,broken/raked exhaust, worn luth et.In this paper, aoustially based detetion of foreignobjets in tires is investigated. This appliation senariois important sine objets in tires an ause punturesand, thus, lead to aidents in the worst ase. The al-ready existing pressure sensors for tires installed at thetires themselves an only detet an already existing rit-ial air loss. However, mirophones an detet the tiredamage before a signi�ant loss of air pressure is mea-surable. For this study, a sound database using aoustisensors at di�erent ar positions has been reorded in realenvironments. Di�erent algorithms to reognize objetsin tires will be ompared in this paper.Detetion of Nails in TiresIf an objet is stuk to the ap of a tire, e.g., a srew, itwill ause a periodially repeating tiking sound with thefrequeny of the spinning tire. Thus, we onsider an ap-proah that is based on the omparison of the frequenyof the aousti signal and the tire frequeny to detet aforeign objet. A blok diagram of the frequeny estima-tion based on aoustial signals is depited in Figure 1.Therefore, the sampled signal s (n) is proessed blok-wise, i.e.,
y (n, ℓ) = s (n+ ℓ · ns)wret

N (n) (1)with n denoting the sampling index, ℓ the blok index,
ns the sample shift and wret

N (n) a retangular windowof length N . The in�uene of N will be investigatedin detail. A signal blok of 3 s duration is depited inFigure 2, upper panel.Sine tra� and environmental noises often have muhenergy at low frequenies, a pre-emphasis �lter is applied,yielding
y′ (n, ℓ) = y (n, ℓ)− γ · y (n− 1, ℓ) (2)where γ is a fator whih ontrols the relation betweenhigh and low frequeny energies. The pre-emphasizedsignal is shown in Figure 2, middle panel.
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argmax ^y(n,l) f f(l)Figure 1: Overview of the frequeny estimation proe-dure. The signal y (k, ℓ) is �ltered by a pre-emphasis�lter. A peak amplifying method is applied that is eitherbased on auto regression or short-time averaging. Noiseredution is applied to the absolute value of the result.A frequeny analysis is onduted afterwards. Four ap-proahes have been tested based on DFT, Comb-�ltering(Comb), modulation spetrogram (mod. STFT), modu-lation Mel-spetrogram (mod. Mel). The frequeny withmaximal energy f̂ (ℓ) is the outome of the estimationproedure.The tiking sound from objets in a moving tire resultsin periodial peaks in the time representation of the sig-nal. A mehanism to amplify peaks and inhibit othersignal omponents is applied. Two approahes have beentested. For the �rst approah, the signal y′ (n, ℓ) is av-eraged for short windows of length Nav and subtratedfrom y′ (n, ℓ), i.e.,
ŷ(av) (n, ℓ) = y′ (n, ℓ)−

1

Nav 0.5Nav
∑

i=−0.5Nav y′ (n+ i, ℓ). (3)The other approah utilizes the auto regression fun-tion yielding
ŷ(reg) (n, ℓ) = y′ (n, ℓ)−

Nreg
−1

∑

i=0

aiy
′ (n− i, ℓ) (4)where ai denotes regression oe�ients and N reg the re-gression dimensionality. The resulting signal is depitedin Figure 2, lower panel. The noise ontained in the ab-solute value of this resulting signal |ŷ (n, ℓ)| is redued bya threshold, i.e.,

ỹ (n, ℓ) =

{

|ŷ (n, ℓ)| for |ŷ (n, ℓ)| > α · σℓ + µℓ,

0 otherwise, (5)with µℓ and σℓ denoting the mean and standard deviationof the signal at blok ℓ, respetively.
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0 0.5 1 1.5 2 2.5 3Figure 2: Pre-proessing of the signal. In the upperpanel, a signal blok y (n, ℓ) of 3 s duration is shown. Thepre-emphasized signal y′ (n, ℓ) is depited in the middlepanel. The signal ∣∣ŷ(reg) (n, ℓ)∣∣ after applying the autoregression method is depited in gray in the lower panel.The signal omponents above the threshold (horizontal,dashed line), that are further proessed, are marked inblak.After pre-proessing, the frequeny modulations areanalyzed. The �rst approah is based on the DFT
ỹ (k1, ℓ) =

∞
∑

n=−∞

ỹ (n, ℓ)wHamm
N (n+ ℓ · ns)e−j2πk1n/N(6)with wHamm

N (n) denoting a Hamming window of length
N and k1 = 0 . . .N − 1 indexing the frequeny bins. ThedB-saled spetrum is used, i.e,

Y1 (k1, ℓ) = 10 log
10

(ỹ (k1, ℓ))
2
. (7)The seond approah applies a omb �lterbank to thespetrogram of Eq. (6). A feedbak omb �lter is de�nedin the frequeny domain as

Homb (k1, k2) = (1− βe−j2πk1/k2

)−1

, (8)where k2 is indexing the omb frequeny and β is a gainfator. Hene, the spetrum using a omb �lter bank isde�ned by
Y2 (k2, ℓ) = 10 log

10

(

∑

k1

Homb (k1, k2)ỹ (k1, ℓ))2

. (9)The third approah omputes a spetrogram for eahframe ℓ, i.e.,
Y ′ (k′, l, ℓ) =

∞
∑

n=−∞

ỹ (n, ℓ)wHamm
L (n+ l · ls)e

−j2πk′n/L.(10)where l is a subframe index, L is the number of samplesper subframe (≡ 25 ms) and ls the hop size (≡ 10 ms).

The modulation spetrogram is obtained by applying aFourier transform to the subframes l
Y ′′ (k′, k3, ℓ) =

∞
∑

l=−∞

Y ′ (k′, l, ℓ)wHamm
L/2 (l)e−j2πk3k

′
2/L.(11)The resulting amplitude modulation spetrogram issummed over the frequeny bands, i.e.,

Y3 (k3, ℓ) = 10 log
10

(

∑

k′

Y ′′ (k′, k3, ℓ)

)2

. (12)The fourth approah applies a Mel-�lterbank
Hmel (k4, k′) to the spetrum Y ′ (k′, l, ℓ), i.e.,

Y ′′′ (k4, l, ℓ) =
∑

k′

Hmel (k4, k′)Y ′ (k′, l, ℓ), (13)where k4 is indexing the Mel-bins. The further steps forthe Mel approah are equal to that of Y3 (k3, ℓ), i.e., ap-plying Eq. (11) and Eq. (12), leading to Y4 (k4, ℓ). All ap-proahes lead to a spetral power density Yv (kv, ℓ) with
Kv frequeny bins per approah v. Thus, the frequenyestimation is given by

f̂v (ℓ) = argmax
kv

{Yv (kv, ℓ)} ·
fs

Kv
(14)with fs indiating the sampling frequeny. If the dif-ferene between the estimated frequeny f̂v (ℓ) and thereferene tire frequeny f (ℓ) is within a tolerane range

∆, a foreign objet is lassi�ed, i.e.,
bv (ℓ) =

{

1 for ∣∣
∣
f̂v (ℓ)− f (ℓ)

∣

∣

∣
≤ ∆,

0 otherwise, (15)where bv (ℓ) = 1 denotes a positive foreign objet dete-tion and else no objet detetion.Experimental SetupFor evaluation of the foreign objet detetion algo-rithms, reordings were done using mirophones and a-elerometers. The mirophones (MICs) and aelerom-eters (ACCs) were installed at the wheel hub and thewheel guard of the rear right tire. To simulate foreignobjets, a srew was attahed to the pro�le of that tire.Reordings were done during driving. The sampling fre-queny was 96 kHz. The data were downsampled to44.1 kHz for testing. For ground-truth of the tire fre-queny f (ℓ), the antilok braking system (ABS) signalwas aessed and reorded as referene.Three di�erent metris were applied for evaluation.The frequeny estimations f̂v (ℓ) are ompared to thereferene frequeny f (ℓ) by either the mean squared er-ror (MSE) MSE =
1

L

L−1
∑

ℓ=0

(

f (ℓ)− f̂v (ℓ)
)2 (16)or the absolute value of the orrelation oe�ient

|r| =

∣

∣

∣

∣

∣

∣

∣

∣

∑L−1

ℓ=0

(

f̂v (ℓ)− µf̂v

)

(f (ℓ)− µf )
√

∑L−1

ℓ=0

(

f̂v (ℓ)− µf̂v

)2

·
∑L−1

ℓ=0
(f (ℓ)− µf )

2

∣

∣

∣

∣

∣

∣

∣

∣

,(17)
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Figure 3: The mean squared error MSE and the orre-lation oe�ient |r| between frequeny estimation f̂ (ℓ)and referene f (ℓ) and the positive rate ρ for four di�er-ent sensor-position-ombinations for the peak amplifyingmethods �auto regression� (blak bar, f. Eq. (4)) and,averaging (white bar, f. Eq. (3)). The system is basedon Y3 (k3, ℓ) (mod. STFT) with N orresponding to 3 s.where L denotes the number of all frames used for evalu-ation and µf̂v
and µf de�ne the mean of f̂v (ℓ) and f (ℓ),respetively. The positive rate ρ is measured by

ρ =
1

L

L−1
∑

ℓ=0

bv (ℓ). (18)ResultsIn the following subsetions, the two approahes forthe peak amplifying, the four frequeny analysis methodsand the blok length N are investigated.Peak AmplifyingTo amplify peaks in a time signal y′ (n, ℓ), two ap-proahes have been proposed: one averages frames overa period of 0.03 s (f. Eq. (3)) and the other uses anauto regression funtion with N reg = 16 oe�ients (f.Eq. (4)). The Results using the Y3 (k3, ℓ) approah fromEq. (12) are depited in Figure 3. The results for themirophones are more aurate than for the aelerome-ters. The best results are ahieved for the mirophone atthe hub. The auto regression approah yield lower MSEand higher |r| and ρ than the averaging approah. Thus,in the following, the auto regression approah is used forpeak amplifying.Frequeny AnalysisFour methods Yv (kv, ℓ) with v = 1 . . . 4 to estimatethe frequeny f̂v (ℓ) from an aousti signal are tested.The results are depited in Figure 4. It an be seen thatthe omb �lterbank approah Y2 (k2, ℓ) fails in detetingobjets. The best results are ahieved for the modulationmethods Y3 (k3, ℓ) and Y4 (k4, ℓ).
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Figure 4: The mean squared error MSE and the orre-lation oe�ient |r| between frequeny estimation f̂ (ℓ)and referene f (ℓ) and the positive rate ρ for fourdi�erent sensor-position-ombinations for the frequenyanalysis methods Y1 (k1, ℓ) (DFT), Y2 (k2, ℓ) (Comb),
Y3 (k3, ℓ) (mod. STFT) and Y4 (k4, ℓ) (mod. Mel). Theblok size N orresponds to 3 s.Blok SizeThe frequeny estimation f̂v (ℓ) is proessed inbloks ℓ. The blok size N should be short on the onehand sine the ar veloity is not onstant over a longerperiod. On the other hand, long windows are needed tohave an adequate frequeny resolution. If the resolutionwas low (onsidering a frequeny range between 0 Hz and20 Hz), i.e., few frequeny bins kv existed, the hanelevel for mislassi�ation would rise. Furthermore, thesmaller the window, the fewer turns of a tire fall into awindow. For example, for a ar veloity of 15 km/h, thatis equivalent to f ≈ 2 Hz, one turn of a tire is within a pe-riod of 0.5 s. Thus, maximally one tiking sound is withina blok of 0.5 s duration that makes it quite di�ult toget a orret frequeny estimation for this window size.Hene, �ve blok sizes between 1 s and 5 s are tested.In Figure 5, the mean squared error MSE, the orrela-tion oe�ient |r| and the positive rate ρ of the sensorswith ontinuously present foreign objet are plotted forthese blok sizes. The frequeny estimation was based on
Y3 (k3, ℓ) and auto regression peak amplifying. It an beseen that longer blok sizes yield better results. However,there is a onvergene in auray, i.e., nearly no gain isahieved for longer blok sizes than 3 s.ConlusionWe presented an algorithm to detet periodially re-peating sounds from tires by aousti sensors. Two kindsof sensors where used at di�erent tire positions to reordaousti data. We showed that mirophones work moreaurate than aelerometers. Two approahes to am-plify peaks from the repeating tiking sounds of objetswere tested. The auto-regression method resulted in bet-ter performane than the averaging approah. To esti-mate the frequeny, four approahes were evaluated. The

DAGA 2015 Nürnberg

1268



 

 

PSfrag replaements

5 s4 s3 s2 s1 s
ρ

|r
|

MSE
MIC: Hub MIC: Wheel guard ACC: Hub ACC: Wheel guard0

0.5

1

0

0.5

1

0

5

10

Figure 5: The mean squared error MSE and the orre-lation oe�ient |r| between frequeny estimation f̂ (ℓ)and referene f (ℓ) and the positive rate ρ for four di�er-ent sensor-position-ombinations for the analysis methodbased on auto regression and Y3 (k3, ℓ) (mod. STFT). Theblok size N varied orresponding to 1 s up to 5 s (seegrey shades).modulation spetrogram approah yielded highest perfor-mane. The blok sizes were investigated and bloks with3 s durations ahieved highest auraies.Referenes[1℄ M. Holmberg, D. Gelbart, and W. Hemmert, �Auto-mati speeh reognition with an adaptation modelmotivated by auditory proessing,� IEEE Trans-ations on Audio, Speeh & Language Proessing,vol. 14, no. 1, pp. 43�49, 2006.[2℄ J. Shröder, S. Goetze, V. Grützmaher, andJ. Anemüller, �Automati aousti siren detetion intra� noise by part-based models,� in Proeedingsof the IEEE International Conferene on Aoustis,Speeh and Signal Proessing (ICASSP), Vanouver,Canada, May 2013, pp. 493 � 497.[3℄ R. A. Lut� and I. Heo, �Automated detetion of alarmsounds,� Journal of the Aoustial Soiety of Amer-ia, vol. 132, no. 2, Sep. 2012.
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