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Introduction

Speech perception is often studied from a macroscopic
perspective, i.e., in terms of the percentage of correctly
identified meaningful words or sentences presented in a
given condition (e.g. in additive noise). In a macroscopic
speech intelligibility test, the acoustic information con-
tained in the stimuli represents only one of several cues
utilized by the listeners. If the acoustic information is
degraded, lexical, semantic, and/or syntactic information
(depending on the experimental design) is exploited by
the listeners to recognize a given word. To investigate
solely the relation between the acoustic properties of the
stimulus and the resulting speech percept in a more con-
trolled manner, a microscopic perspective may be taken
by measuring consonant perception. Here, nonsense syl-
lables like consonant-vowel combinations (CVs) are typi-
cally presented to listeners in additive steady-state noise.
The responses to each speech stimulus are then analyzed
both in terms of consonant recognition and consonant
confusions.

Several concepts for modeling macroscopic speech intelli-
gibility have been proposed. Some of these shall be men-
tioned here as representatives of the two main concepts
in speech perception modeling: The traditional Articu-
lation Index (AI) [1] is based on the signal-to-noise ratio
(SNR) and audibility at the output of an auditory in-
spired filterbank and represents the audibility-based ap-
proach. The more recent Extended Speech Intelligibility
Index (ESII) [2] is essentially a short-term version of the
AI. The speech-based Envelope Power Spectrum Model
(SEPSM) [3], on the other hand, considers speech intelli-
gibility to be proportional to the SNR in the modulation
domain (SNReyy) and represents the modulation-masking
based approach.

A few recent studies have attempted to relate micro-
scopic consonant perception data to the above mentioned
classes of models. Li et al. [4] related consonant recogni-
tion data to the so-called Al Gram, a short-term repre-
sentation of the Al that is conceptually comparable to the
ESII. Jiirgens and Brand [5] used an elaborate auditory
model with a 4-channel modulation filterbank to pre-
dict consonant recognition and confusions. A template-
matching back end based on a dynamic time warping
(DTW) algorithm [6] was used and different back end
configurations were tested. The model was shown to ac-
count well for consonant recognition while the confusion
predictions were less successful. A similar concept was
applied in a study by Zaar et al. [7], which compared
the predictive power of different front ends using a fixed
DTW-based back end configuration. It was shown that a
modulation-domain front end yielded more accurate con-

sonant recognition predictions than an audibility-based
front end. However, the confusion predictions obtained
with both front ends were found to be unsatisfactory.
The present study took an alternative approach to test
the suitability of different auditory models for conso-
nant perception modeling. First, consonant perception
data were obtained with Danish normal-hearing listen-
ers. The data were analyzed with respect to four different
potential sources of stimulus-induced variability using a
measure of the perceptual distance between responses.
In particular, the perceptual distances induced by the
acoustical differences (i) across CVs (i.e., across stimuli of
different phonetic identity), (ii) across talkers, (iii) within
talkers (both for stimuli of the same phonetic identity),
and (iv) across masking-noise tokens (mixed with iden-
tical speech tokens) were calculated. Then, the corre-
sponding stimuli were fed through different audibility-
and modulation-based auditory models and the distances
between the obtained internal representations were calcu-
lated using DTW. Finally, the perceptual distances were
compared to the corresponding modeled distances. The
suitability of the different modeling approaches is dis-
cussed.

Sources of perceptual variability

Experiment 1: Speech variability. CVs consisting
of the 15 consonants /b, d, f, g, h, j, k, |, m, n, p, s, |,
t, v/ followed by the vowel /i/ were used. Six record-
ings of each CV (three spoken by a male, three spoken
by a female talker) were taken from the Danish nonsense
syllable speech material collected by Christiansen and
Henrichsen [8], cut, and faded in and out manually. The
levels were equalized using VUSOFT, a software imple-
mentation of an analog VU-meter [9], which effectively
equalizes the vowel levels and thus ensures realistic rela-
tions between the levels of the consonants. One particu-
lar white masking noise waveform with a duration of one
second was generated for each speech token in each SNR
condition and faded in and out using raised cosine ramps
with a duration of 50 ms. SNR conditions of 12, 6, 0,
-6, -12, and -15 dB were created by fixing the noise level
and adjusting the overall root-mean-square level of the
speech tokens according to the desired SNR. The speech
tokens were mixed with the respective noise tokens such
that the speech token onset was temporally positioned
400 ms after the noise onset.

Experiment 2: Noise variability. For each type of
CV from experiment 1, only one recording spoken by the
male talker was used. The equalization was performed as
described above. Three masking-noise conditions (frozen
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noise A, frozen noise B, and random noise) were consid-
ered. For each speech token, one particular white noise
waveform with a duration of one second was generated
and labeled ”frozen noise A”; the same noise token was
then circularly shifted in time by 100 ms to obtain ”frozen
noise B”. The noise tokens were faded in and out us-
ing raised cosine ramps with a duration of 50 ms. The
noise waveforms for the random noise condition (added
to prevent noise learning) were newly generated for each
presentation and faded in and out in the same manner
during the experimental procedure. The noisy speech to-
kens for the SNR conditions (12, 6, 0, -6, -12, and -15
dB) were created as in experiment 1.

Procedure. Eight normal-hearing native Danish listen-
ers with an average age of 25 years participated in the
experiment. Listeners were presented with the stimuli
in experimental blocks ordered according to SNR in de-
scending order. Each block included a short training run.
The order of presentation within one experimental block
was randomized. In experiment 1, each stimulus (each
noisy speech token at each SNR) was presented three
times to each listener. In experiment 2, each stimulus
(each speech token in each masking noise condition at
each SNR) was presented five times to each listener. Lis-
teners were seated in a sound attenuating listening booth
in front of a computer display and listened to the stimuli
monaurally through equalized Sennheiser HD580 head-
phones. The stimuli were played as “.wav“ files (44.1
kHz, 16 bits). The sound pressure level of the noise was
set to 60 dB, while the overall stimulus level differed de-
pending on the level of the speech (i.e., on the SNR).
After each stimulus presentation, listeners had to choose
one of the response alternatives displayed as 15 buttons
labeled /b, d, f, g, h, j, k, |, m, n, p, s, [, t, v/ and
one button labeled “I don’t know“ on a graphical user
interface (GUI).

Perceptual distance measure. For each stimulus and
listener, the responses obtained in the experiments were
converted to proportions of responses by distributing any
“I don’t know“ response evenly across the 15 other re-
sponse alternatives and dividing the frequencies of re-
ponses by the number of stimulus presentations. The
perceptual distance between two response vectors ry and
rp was defined as the normalized angular distance be-
tween them:

D(ry,r2) = arccos< ry,ra) > . 100%

Tl Qeall) 7z W

where r; = [py, Dt ---, Dv] denotes the response vector ob-
tained for stimulus i and py represents the proportion of
response “x“. The normalization term contains the max-
imum possible angle of 77/2 and re-scales the result to a
percentage.

The perceptual distance was calculated across four dif-
ferent factors: (i) across CVs (i.e., across stimuli of dif-
ferent phonetic identity), (ii) across talkers, (iii) within
talkers (both for stimuli of the same phonetic identity),
and (iv) across masking-noise tokens (mixed with identi-
cal speech tokens). The across-noise distance was calcu-
lated using the data obtained in experiment 2. All other

distances were extracted from the data obtained in ex-
periment 1. For each considered factor, the perceptual
distance was calculated across all pairwise comparisons
of response vectors representative of that factor. The
calculation was performed for each SNR condition sepa-
rately and the individual distance values were averaged
across the considered response pairs and across listeners.
As a result, the across-CV, across-talker, within-talker,
and across-noise perceptual distances were obtained as a
function of the SNR.

Results. Figure 1 shows the results. As expected,
the largest perceptual distance was observed across CVs
(black bars). While the across-CV distance was at ceiling
for large SNRs (as correctly recognized stimuli resulted
in orthogonal response vectors), it decreased with de-
creasing SNR (as listeners made more confusions). How-
ever, different speech tokens of the same phonetic iden-
tity also produced substantial perceptual distances as re-
flected in the across-talker (blue bars) and within-talker
(green bars) cases. These distances were low for large
SNRs (as correctly recognized stimuli resulted in simi-
lar response vectors) and increased towards lower SNRs
(as listeners made more confusions). Even a time shift
in the masking-noise waveforms mixed with the same
speech token led to a measurable perceptual distance (red
bars) that increased with decreasing SNR. The largest
CV-specific distance was the across-talker distance (blue
bars), followed by the within-talker distance (green bars);
the smallest effect was found for the across-noise distance
(red bars). This ranking remained almost constant across
SNR.
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Figure 1: Perceptual distances across CVs (black), across
talkers (blue), within talkers (green), and across noise (red)
as a function of the SNR. The rightmost cluster shows the
average across SNR.

Sources of variability in a model frame-
work

Subband power P. The subband power P was calcu-
lated using 22 gammatone filters with equivalent rectan-
gular bandwidths. The gammatone filter center frequen-
cies f. were spaced on a third-octave grid, covering a
range from 63 Hz to 8 kHz. The Hilbert envelope of the
temporal output of each filter was extracted and low-
pass filtered using a first-order Butterworth filter with
a cut-off frequency of 150 Hz. The subband envelopes
were downsampled to a sampling frequency of 1050 Hz
and the power of the subband envelopes was calculated
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and converted to dB. P (¢, fc) is a function of time ¢ and
gammatone filter center frequency f..

Modulation power P.,oq4. The modulation power
Piod was obtained using the same subband decompo-
sition, envelope extraction, lowpass filtering, and down-
sampling as described above. Each subband envelope was
then passed through a modulation filterbank consisting
of seven second-order bandpass filters in parallel with
one lowpass filter. The bandpass filter center frequen-
cies were octave spaced between 4 Hz and 256 Hz. The
modulation lowpass filter was of third order with a cut-
off frequency of 2 Hz. The power at the output of each
modulation filter was calculated in dB. Pyod(t, fe, fin)
is a function of time ¢, gammatone filter center frequency
fe¢, and modulation frequency f,.

AC-coupled modulation power PZ{ ;. The ac-
coupled modulation power P{ , was obtained in the
same way as the modulation power Pp,0q. However, the
output of each modulation filter was in this case normal-
ized by the long-term subband DC, which is consistent
with the sEPSM by Jorgensen et al. [3]. P2 4(¢t, fe, fm)
is a function of time ¢, gammatone filter center frequency

fe, and modulation frequency f,.

Modeled distance calculation. The experimental
stimuli (excluding the noise-only portions at begin-
ning and end) were fed through each of the models
and the corresponding internal representations (IRs)
were obtained. A standard dynamic time warping
(DTW) algorithm was applied [6] to obtain the modeled
distance between the IRs. It is based on a distance
matrix D(t1,t2) that contains the Euclidean distances
between the IRs of two stimuli for all possible com-
binations of temporal samples. The DTW algorithm
finds the path through this matrix that results in
the minimum possible cumulative distance along its
elements, using a dynamic programming scheme for
efficiency. The Euclidean distance matrices were cal-

culated as DP(tl,tQ) = \/Zfr [Pl(tlvfc) — Pz(tQ, fc)]Q
for P and as Dp,_ . (t1,t2) =

\/ch me [Pmod,l(th fc; fm) - Pmod,2(t27 fca fm)]2

for Pmod- Dpa",]cod was calculated similarly to Dp__,.
The modeled distance was defined as the cumulative
distance between two IRs obtained using DTW. To
minimize the influence of differences in duration, the
cumulative distance was normalized by the length of the
alignment path. The modeled distances were calculated
across all pairwise comparisons of stimuli that had also
been considered for the perceptual distance calculation.
The calculation was performed for each SNR condition
separately and the individual distance values were
averaged across the considered stimulus pairs. As a
result, the across-CV, across-talker, within-talker, and
across-noise modeled distances were obtained as a
function of the SNR.

Results. Figures 2(a), 2(b), and 2(c) show the modeled
distances obtained with the three different models. It
can be seen that the trends that were observed in Fig-
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ure 1 for the across-CV (black bars), within-talker (green
bars), and across-noise (red bars) perceptual distances
were well captured by all three models. However, the
modeled across-talker distances (blue bars in Figure 2)
strongly deviated from the perceptual across-talker dis-
tances (blue bars in Figure 1): while the perceptual data
showed an increasing distance with decreasing SNR, all
simulations showed the reversed trend. Furthermore, the
across-talker distance values were strongly overestimated
by all models. This overestimation was most pronounced
for P, less pronounced for Pyoq, and least pronounced
for Pe¢_ .. as reflected in the blue bars in Figures 2(a),

mod’

2(b), and 2(c), respectively.
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Figure 2: Modeled distances across CVs (black), across talk-
ers (blue), within talkers (green), and across noise (red) as a
function of the SNR. The rightmost cluster shows the average
across SNR.

Model parameter evaluation

To investigate the influence of the considered envelope
bandwidth, the modeled distances were calculated mul-
tiple times for each model with different model parame-
ters. In particular, the distances were calculated (i) for P
using 8 different envelope lowpass filter cut-off frequen-
cies (2, 4, 8, 16, 32, 64, 128, 256 Hz) and (ii) for Pyod
and PgS 4 using 8 different modulation filterbank con-
figurations (only first, first two, first three, etc. filters of
the modulation filterbank). Pearson‘s correlation coeffi-
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cient r was calculated between the obtained perceptual
distance pattern depicted in Figure 1 and the respective
modeled distance patterns. This reflects qualitative simi-
larity of the distance distributions across SNR and across
the considered distance types.

Figure 3 shows the performance of the different mod-
els in terms of Pearson‘s r as a function of the lowpass
filter cut-off frequency (in case of P) and the center fre-
quency of the highest modulation filter considered in the
modulation filterbank (in case of Pmoa and P 1), re-
spectively. The lowest similarity between the perceptual
and the modeled distances was observed for P (squares),
which increased towards larger lowpass filter cut-off fre-
quencies. Py,0a (diamonds) yielded a better match to
the perceptual distance, especially when using the mod-
ulation filters up to 8 Hz; higher-frequency modulation
filters slightly worsened the performance. For P&, (cir-
cles), the match with the perceptual distance was found
to be by far the best of all models, particularly when
using only the low-frequency modulation filters.
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Figure 3: Pearson’s r calculated between perceptual distance

pattern and modeled distance patterns as a function of per-

mitted envelope bandwidth for subband power P (squares),

modulation power Pmoa (diamonds), and ac-coupled modu-
lation power Pgi,q (circles).

Summary and discussion

Four sources of stimulus-induced variability in consonant
perception were considered: across-CV, across-talker,
within-talker, and across-noise variability. The influence
of these sources of variability on the responses of normal-
hearing listeners was quantified using a perceptual dis-
tance measure. The distances between the corresponding
stimuli, as interpreted by three different auditory models,
were obtained and compared to the perceptual distances.
While the across-CV, within-talker, and across-noise dis-
tances found in the perceptual data were well represented
by all models, the models strongly overestimated the
across-talker distance for large SNRs. A closer inspec-
tion suggested that the models overestimated the contri-
bution of long-term spectral differences between talkers
of different gender. Such talker-specific differences repre-
sent a challenge in automatic speech recognition, where
explicit speaker normalization techniques are typically
applied to mitigate to effect [10]. In the present study,

the overestimation was least pronounced using a modu-
lation filterbank analysis followed by a normalization of
the filter outputs by the long-term subband DC (as in the
sEPSM by Jorgensen et al. [3]). This seems plausible as
only relative changes in the subband envelopes are seen
by such a model.

Overall, the audibility-based model showed a weak corre-
lation with the perceptual domain. Introducing a modu-
lation filterbank yielded a substantial increase in the cor-
relation of model domain and perceptual domain. Fur-
ther introducing normalization of the modulation filter-
bank outputs by the corresponding long-term subband
DC resulted in the by far best observed match.
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