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Abstract

Most natural sounds, voices, and musical instruments
produce modulated tone complexes. The frequency mod-
ulation of these tone complexes is of vital interest for
topics like melody extraction, speech recognition, and
computational auditory scene analysis. In this work,
we introduce a new approach to tracking the modula-
tion of tone complexes. This algorithm, called Stretch-
Correlation, tracks the modulation of tone complexes
by comparing successive short-time spectra using resam-
pling and spectral correlation. This algorithm is com-
pared with two well-known base frequency estimators
YIN and PEFAC, and is shown to outperform both at
positive signal-to-noise ratios for both synthetic tone
complexes and real instrument recordings.

Introduction

A key characteristic of many sounds in nature, music,
and speech is the sound’s fundamental frequency and fre-
quency modulation. If these are accurately estimated,
they form the basis of melody extraction, music tran-
scription, and play an important role in speech recogni-
tion and computational auditory scene analysis. Most of
these sounds are modulated tone complexes, and consist
of a fundamental frequency and a number of partial fre-
quencies at fixed multiples of the fundamental frequency.

Many early fundamental frequency estimators assumed
the tone complexes to be harmonic, and thus that par-
tial frequencies only occur at integer multiples of the base
frequency [5]. Adding a pre-whitening stage to this pro-
cess [4] or interpreting the tone complex spectra in the
logarithmic frequency domain [1] was later shown to im-
prove the performance of these algorithms. More recent
algorithms incorporated specialized partial patterns for
music [3] or speech [2]. Still, all of these algorithms are
fundamentally limited by their assumption of a strictly
harmonic tone complex.

Stretch-Correlation

The present algorithm tracks the frequency modulation
of tone complexes by correlating differently-stretched ver-
sions of short-time spectra with one another. A tone com-
plex spectrum S[f ] consists of a spectral peak at a base
frequency f0 and P partials at arbitrary but unchanging
factors mp of that base frequency.

S[f ] =

P∑
p=0

ap · Λ (f − f0mp) (1)

where Λ is a peak function, ap is the amplitude of the pth
peak and p is the partial index. When this tone complex
is frequency modulated by a factor σ, both the base fre-
quency and all partial frequencies change by that same
factor. For sufficiently peaky and narrow peak functions,
this is equivalent to stretching the whole spectrum along
the frequency axis by σ−1:

S[σ−1 · f ] ≈
P∑
p=0

ap · Λ (f − σ · f0mp) (2)

For computed short-time spectra, spectral stretching can
be implemented as resampling of the spectrum.

With that, the modulation difference σ between two
short-time spectra Sk and Sl of a modulated tone com-
plex can be estimated as

σk,l = argmax
σ

Sk[σ−1 · f ] ? Sl[f ] (3)

where ? denotes correlation.

This stretch factor can be calculated for every successive
pair of short-time spectra to form a frequency track

Tm =

m∏
k=1

σk,k−1 (4)

The robustness of the frequency track is further improved
by comparing each spectrum against a rolling mean of
past spectra, where the mean spectrum is stretched to
match each spectrum before averaging.

For tone complexes and white noise, spectral stretching is
equivalent to modulation. However, this assumption does
not hold for non-white background noise, where stretch-
ing would alter the spectral shape of the noise. To com-
pensate for this, the background noise has to be whitened
before stretch-correlation is applied.

DAGA 2015 Nürnberg

1500



For this purpose, a simple smoothing algorithm smooths
the spectra using a brick-wall filter w[f ′] = 1 if f ′ >
f ′w else 1 with a very low cut-off frequency-frequency
f ′w = 4 in the spectrum-of-spectrum f ′ domain:

S = S − |IFFT (w[f ′] · FFT (S[f ]))| (5)

where S is the smoothed spectrum.

Evaluation
The performance of Stretch-Correlation was evaluated
with a large number of varying conditions, and compared
to the performance of two well-known base frequency es-
timators YIN[6] and PEFAC[2]. The evaluation was com-
pleted with one set of 450 synthetic signals with various
partial patterns and background noises and 5 single in-
strument recordings in different background noises.

The synthetic signals contained a base frequency and ten
partials at different multiples of the base frequency at
different amplitudes. Amongst the partial distributions
were harmonic tone complexes, randomized partial dis-
tributions, and partial distributions that mimic musical
instruments. Base frequencies started between 40 Hz and
1 kHz, and modulated by one octave either continuously
or at different musical step sizes with different rates of
change. As a whole, the synthetic signals were designed
to contain signals similar to both musical applications
and human speech.

The single instrument recordings were excerpts from the
MIREX[7] dataset, and their base frequencies were an-
notated by hand using the provided MIDI tracks. They
were edited to contain no pauses. All instrument record-
ings and synthetic signals were mixed with white noise,
pink noise, and two kinds of bandpass noise, at signal-to-
noise ratios between 100 dB and -20 dB.

To evaluate the accuracy of each algorithm, the Normal-
ized Musical Correctness (NMC) was used

NMC =
1

M

M∑
m=0

{
1 if

∣∣∣ fm
f̂m
− 1
∣∣∣ < 2

1
24

0 otherwise
(6)

where fm is the true base frequency track, and f̂m is
the estimated modulation frequency track, normalized
to the true base frequency by the median of the quo-
tient between the estimated track and the true track.
This normalization does not change the shape of the fre-
quency track, but multiplies its magnitude by a fixed
value. This makes the frequency-less modulation track
of Stretch-Correlation comparable to the base frequency
estimates from YIN and PEFAC.

Figure 1 shows the algorithms’ performance in compar-
ison to YIN and PEFAC. On the left side, Stretch-
Correlation outperforms YIN by about 10 dB SNR, and
is significantly more accurate than PEFAC. Only at very
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Figure 1: Evaluation of Stretch-Correlation’s performance
in comparison to YIN and PEFAC for synthetic signals and
recordings, within and beyond the algorithms’ design limits.

low SNRs and instrument recordings can PEFAC show
better accuracy than Stretch-Correlation.

The right side of Figure 1 shows the algorithms’ perfor-
mances if they only operate on signals they were designed
for. This excludes non-harmonic tone complexes for YIN
and PEFAC and base frequencies beyond human speech
for PEFAC. Stretch-Correlation only excludes very low
base frequencies. If a higher FFT length is chosen, even
that limitation can be avoided. With these limits in
place, Stretch-Correlation achieves almost 100% accu-
racy for positive SNRs. YIN is still inferior by about 20
dB SNR, and PEFAC still has an edge for music record-
ings and very low SNRs.

Conclusion

Stretch-Correlation is a new algorithm that can estimate
the frequency modulation of tone complexes with arbi-
trary partial structures. It was shown to outperform two
well-known base frequency estimators for synthetic and
real signals in a variety of noises. More importantly, its
accuracy approaches 100% for positive SNRs over a wide
variety of signals. Stretch-Correlation achieves this by
modelling of the frequency modulation of tone complexes
as spectral stretching, which is a powerful concept that
should also be applicable to a wide range of problems
beyond base frequency estimation.
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