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Abstract

The low frequency sound transmission behavior resulting

from the bore and tone hole geometry determines the into-

nation properties of woodwind instrument to a large extent.

The prediction of sounding frequencies from the air column

modes however is difficult at the required precision level, be-

cause of the nonlinear reed - resonator interaction. Due to this

coupling significant pitch deviations from the fundamental air

column frequency occur.

To investigate this for the bassoon, a numerical study is pre-

sented employing a minimal model of the reed-resonator in-

teraction. Some aspects of the model are explored here using

previously obtained experimental data from artificial mouth

experiments. The computed sounding frequencies from the

model are compared to empirical estimates relying only on

the impedance curve of the resonator, and to pitch estimated

from a perception experiment with a musician.

Independent of the pitch estimator, the results point to the im-

portance of higher modes for the sounding frequency of the

bassoon, especially for notes in the low tonal range.

Introduction

The task to predict sounding frequencies from geometry infor-

mation is of practical relevance in woodwind design. While

calculation and measurement of acoustic resonator properties

in terms of input impedance is well understood, the interpre-

tation of impedance curves in terms of intonation and playing

properties of the instrument is still difficult.

Several recipes have been suggested for the practical purpose

to determine favorable playing frequencies of wind instru-

ments from input impedance curves.

The simplest, intuitive approach is to assume, that the sound-

ing frequency will be near the largest input impedance peak

Zmax in the magnitude spectrum. The corresponding fre-

quency estimator is the peak frequency f(|Z|max).
To account for the possibility, that the pitch may not only de-

termined by a single air column resonance, but also by higher

overtones, Wogram [1] suggested a “sum function”

SF (f0) =

Nh∑
nh=1

Re{Z(nh f0)}, (1)

where nh = 1..Nh are the ordinal numbers of the partials

taking into account1. The corresponding sounding frequency

estimator is the frequency, where SF has a maximum, thus

f(SFmax).
Another approach, largely related to the idea of a sum function

1Nh depends on the frequency range of interest Nh ≤ fmax/f0

is the “weighted intonation average”

Dw.av(f0) =
1∑

nm
|Znm

|
Nm∑

nm=1

Dnm
|Znm

|, (2)

where nm = 1..Nm are the ordinal numbers of the most har-

monic modes with respect to f0, and Dnm
is the modal de-

tuning, given by the ratio of the modal frequency fnm
to the

harmonic frequency nmf0 in Cent2. The corresponding fre-

quency estimator is the frequency of a local minimum in the

averaged detuning3 f(Dw.av,min).
In the approaches outlined above, the reed is taken into ac-

count as a passive, linear acoustic element which prolongs the

air column at its input end. Measured impedance curves can,

after this simple correction, be directly used to obtain the pitch

estimators.

In this paper we want to compare this type of sounding

frequency estimator to a minimal physical model of reed-

resonator interaction, as suggested by Kergomard [4]. Here,

the reed is included as a non-linear generator element with

two control parameters representing mouth pressure and em-

bouchure tightness. The coupled model is able to perform

stable, self-sustained oscillations. By use of measured control

parameters for all notes on the bassoon [2], we determined

frequencies at which the system settles and compare these to

the purely passive estimators.

The paper is organized as follows: Firstly, a description of the

coupled model is given. Then a brief outline on the experi-

ment to determine the control parameters is presented. This

is followed by some exemplary simulation results. Finally we

compare the sounding frequencies estimated with the various

approaches and discuss their practical use.

Material and Methods
The implementation of the model which is used here, was sug-

gested by Doc et al. [5].

Description of the coupled model

The resonator is modeled as a superposition of n independent

acoustical modes on the left hand side of the following dif-

ferential equation system relating pressure p and volume-flow

rate u as

p̈i +
ωi

Qi
ṗi + ω2

i pi = Ciωiu̇ (3)

where i = 1..n is the ordinal number of the modes, and

(C, ω,Q)i are parameters triples of the corresponding single

2If a frequency f is a semitone higher than a reference frequency fref ,

the corresponding detuning will be 1200 log2(f/fref ) Cent = 100 Cent.
3This estimator was originally proposed in [2], but it was brought to our at-

tention recently that a similar estimator was suggested earlier in unpublished

work by Krüger [3].
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DOF transfer functions (see Eq. (6) ) .

The generator is represented by the excitation function u on

the right hand side of the equation system. This function de-

pends non-linearly on p and describes the pressure-flow char-

acteristics of the reed valve

u =

{
ζ(1− (γ − p))

√|γ − p|sgn(γ − p) for γ − p ≤ 1

0 for γ − p ≥ 1

(4)

where γ, ζ are the control parameters related to the mouth

pressure and the embouchure tightness, respectively.

All quantities introduced above are non-dimensionalized as

p =
p̃

pM

u =
Zc ũ

pM

γ =
pm
pM

ζ =ZcSin

√
2

ρ pM

(5)

where p̃, ũ are the fluctuating reed pressure and volume-flow-

rate in Pa and m3/s, respectively; pm, pM are the constant

mouth pressure and, the constant pressure needed to close the

reed, respectively; Sin is the constant reeds inlet area; and

ρ, Zc are the density of air and the characteristic impedance at

the resonator input cross section. Note, that γ − p in Eq.(4)

is the non-dimensional pressure difference across the reed and

the reed pressure p in Eq.(3) is calculated as p =
∑

i pi.

Resonator parameters

The resonator parameters are (C, ω,Q)i, i.e. the modal am-

plitude, the modal angular frequency and the modal damping

of the ith impedance peak. Not all impedance peaks have

been taken into account here, but the number of modes n has

been set to eight. Further a pre-selection has been done: For

each of the harmonics if0 only one impedance peak has been

used [6]. The selection was based on the minimum detuning

criterion. The 3n resonator parameters where determined by

fitting a frequency domain model

Zω = Zc jω
∑
i

Ci ωi

(j ω)2 + jω ωi

Qi
+ ω2

i

(6)

to measured input impedance data, that was corrected for a

reed equivalent volume Veq = 1.9 cm3. The upper frequency

limit was set to 3 kHz.

Generator parameters

The two embouchure parameters γ, ζ have been determined

from blowing experiments with an artificial mouth [2], which

had a sensors to measure the pressures p̃, pm and the mean

flow
∫
ũdt. The reed’s intake cross section Sin was measured

optically through transparent walls of the housing. A calibra-

tion measurement of the force exerted to the reed by the artifi-

cial lip under quasi-stationary conditions allows to determine

the embouchure parameters during a blowing experiment[7].

Implementation and Solution

We implemented the model in MATLAB and use the built-

in ODE solver ode23s and an initial pressure disturbance

p1(t = 0) = 0.01 as suggested by Doc et al. [5]. Largely de-

pending on the number of modes n in Eq.(3), the computa-

tional time is about 5-15 times the physical time on an intel

CORE i5 notebook.

Results
In this section some exemplary calculation results of the

model are shown. To demonstrate the influence of the number

of radiator modes we present a simulation case study based

on experimental data from a German bassoon Sonora (Fa.

Oscar Adler, Markneukirchen, Germany), played with a

bocal N6 (Fa. Guntram Wolf Holzblasinstrumente, Kronach,

Germany), and a plastic double reed 270 M (Conn-Selmer

Inc., Elkhart, Indiana, USA). The standard fingering of the

note E2 (f0 = 83 Hz) was applied, and the embouchure

parameters were measured as γ = 0.3, ζ = 2.6.

Influence of higher modes

For the same initial pressure disturbance a set of simulations

was run, in which the number n of modes was varied from

one to eight. For n = 1 and n = 2 no stable periodic regime

evolved. However, for n ≥ 3 we found the system settling in

limit cycle regimes. The corresponding waveforms are shown

in Figure 1.
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Figure 1: Simulated pressure waveforms for the bassoon note E2

(f0,nom = 83 Hz), number of modes n varies from three to eight
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Figure 2: Influence of the number of modes on the pitch. Deviation

in Cent between the nominal sounding frequency f0,nom = 83 Hz

and the limit cycle oscillation frequency f0,sim of the model

As a criterion for the settling of the system, the instanta-

neous frequency was used. Once its change was smaller than

0.1 Cent the calculation was interrupted. Interestingly, the
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sounding frequency varies with the number of modes: For

the configuration under study, we found the pitch deviation

to decrease from -120 Cent to -20 Cent when increasing the

number of modes from three to eight (Figure 2).

Comparison of intonation estimators

For this deliberately chosen amount of modes n = 8, calcu-

lations were carried out for a variety of tupels (γ, ζ) at which

a note could be played in tune with the artificial mouth. The

experimental data set used for the calculation encompasses

experimental data from the full tonal and dynamical range on

5 different bassoon-bocal combinations.

As a matter of course, the data were not normally dis-
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(a) f0-estimators from an impedance measurement
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(b) f0-results from the simulation

Figure 3: Comparison of frequency estimators: first impedance peak

(f(Zmax)), sum function (SF), amplitude averaged pitch deviation

(Dw.av), and minimal non-linear reed model (MRM). The results are

given in form of a tuning deviation f0,est./f0,nom.. The gray boxplot

represents the subjective tuning as perceived by a musician [8].

tributed, but are still given here as mean value ± standard

deviation for graphical reasons. For simplicity these data

are represented by mean value and standard deviation of the

detuning f0,sim/f0,exp (Figure 3(b)). The gray boxplots in

Figures 3 a) and b) are results obtained from an experiment

with a musician, who was asked to play without embouchure

corrections [8].

Discussion
Intonation estimators taking more than one acoustical mode

into account yield results that resemble intonation curves of a

musician. It is most important, that the reed’s effective vol-

ume is chosen properly. For the case of the bassoon studied

here, the deviations are still up to a half semitone. Especially

in the higher registers, the estimators predicted higher pitches

as compared to the musician.

In contrast to the empirically suggested pitch estimators, a

physical model of reed-resonator can demonstrate effect of

higher modes on the pitch generation. For a wide range of

measured control parameters, we find a periodic solutions

of general resemblance to the measured oscillation regime.

Moreover, the non-linear model features a good quantitative

agreement in oscillation amplitude and frequency.

From the viewpoint of non-linear dynamical modeling, the ob-

served pitch deviations within a few percent seem to be a rea-

sonably good result from a minimal model. However, in view

of the very tight tuning tolerances allowed in music, more re-

search is needed to identify a precise enough tuning estima-

tor.
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