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Introduction 
This paper introduces a physical parameter-based piano 
model, where the main components of a piano as hammers, 
strings and the soundboard are modelled independently. All 
effects of parameter manipulation are observable in in the 
output signal of each subsystem, and finally in the radiated 
sound.  

In general the main purpose of modelling can be twofold. In 
the first case the main output of the system is a virtual 
instrument. This makes it possible to reserve or recreate the 
sound of historical instruments and create numerous new 
instruments for musical experimentation. In the other case the 
virtual instrument is only an intermediate step towards 
creating new instruments. This means that the model could 
also play an important role in improving and perfectionating 
the instruments. 

Our developed system is mainly considered as an educational 
and research tool, which allows examination and thorough 
comparison of different modelling approaches and parameter 
sets available from the literature. The modular setup makes it 
possible to easily modify or replace different subsystems of 
the whole instrument. 

In this paper we describe possible modelling techniques of the 
piano and briefly introduce our recent modelling results. 

 

Figure 1: Subsystems of implemented piano model and their 
connections. 

Hammer-felt modelling 
There are 88 notes in a conventional piano. A hammer belongs 
to each note which has a wooden core covered by 3-4 layers 
of felt. We do not deal with the hammer action, so the model 
input is the initial hammer velocity and the outputs are the 
hammer displacement, force and the actual felt compression. 

The piano hammer is generally modelled as a mass-spring 
system in the literature. To describe the behaviour of the 
spring (felt) there are several possibilities. Among different 
models for spring behaviour the simplest one is the linear 
force model (s.a. eq. 1) where  is the hammer force,  is the 
felt stiffness and  is the felt compression. [1] 

 [N]  (1) 

A still imprecise but commonly used hammer model is the 
general nonlinear force law (s.a. eq. 2) with the nonlinearity 
exponent , whose value varies in a wide range. E.g. [2] 

 [ ]  (2) 

Those models match best with the reality, which take into 
consideration, that the hammer felt shows hysteretic 
behaviour according to measurements. The first hysteretic 
closed formula was given by Stulov. [3] In his model the felt 
force is determined by two further parameters, the hysteretic 
constant ( ) and the time constant ( ). (s.a. eq. 3) 
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Rocchesso and Avanzini describe the hysteretic behaviour 
using the felt loss coefficient ( ) and the compression 
velocity. [4] (s.a. eq. 4) 

 
[N]  (4) 

Later Stulov simplified his model. [5] His three-parameter 
model has the same form as the results by Brenon and 
Boutillon. [6] (s.a. eq. 5) 
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We ran several simulations to compare these models. To have 
stable simulation data, the time resolution of hammer model 
should be very fine ( ). In our example simulation the 
initial velocity was chosen as , the hammer mass . 
For the felt the hysteretic model by Rocchesso and Avanzini 
was applied with parameters  for stiffness,  
for nonlinearity exponent and for loss coefficient. The 
hammer stikes the string at its quarter point and a second 
string was vibrated freely. In this simulation case the 
hysteretic behaviour of the felt is shown clearly. (s.a. fig. 3), 
and the resulting force function follows the expectations 
based on measurements published in the literature. (s.a. fig. 2) 
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Figure 2: Hammer force as function of time. Simulation 
output using felt model of Rocchesso and Avanzini. 

 
Figure 3: Hammer force as function of felt compression. 
Simulation output using felt model of Rocchesso and 
Avanzini. 

String modelling 
Nowadays the piano strings are made from drawn music wire. 
There are 1, 2 or 3 strings per each note. To model the 
numerous strings we implemented a multi-string subsystem. 
The model receives the output force of the hammer model as 
input and delivers the string displacements and the 
termination forces (bridge force) as outputs.  

The modelling approach is to solve the wave equation 
numerically. To accomplish this task, we implemented a 
digital waveguide model. Digital waveguide models use the 
discretized form of d’Alambert’s solution (s.a. eq. 6), which 
describes the travelling waves as a sum of two waves moving 
in opposite direction.  

 [m]  (6) 

All losses and reflections from string terminations are 
incorporated into a termination filter [7]. As the classical 
waveguide model behaves inappropriately if hammer-string 
interaction needs to be accounted for, Bank’s improved 
waveguide model has been implemented which uses an 
alternative force-input method. [8]. (s.a. Figure 4) 

 

Figure 4: Digital waveguide model with one string using the 
alternative input method of Bank. 

To get closer to the behaviour of a real string, viscous 
damping is modelled as a constant reflection coefficient, and 
the soundboard termination is modelled using IIR filters (s.a. 
eq. 7). The terminating filter set is capable of modelling a 
multiple degree of freedom resonator characterised by its 
eigenfrequencies, damping, modal masses and mode shapes 
at the string terminations. These modal parameters enable to 
express the input admittance matrix of the terminator and 
couple the strings to the soundboard. 

 

 

 

[m/s]  (7) 

The block diagram of the implemented multi-string system 
with  strings and the IIR-filter set is shown in Figure 5.  

 

Figure 5: Coupled digital waveguide model with N strings 
and the IIR filter logic for soundboard. 

 

Figure 6: Force acting on string terminations. (Hammer 
impact on light grey.) 

The coupled motion of the two strings in a chosen position is 
shown in Figure 7. 
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Figure 7: The coupled motion of the string. (Hammer impact 
on light grey.) 

Soundboard modelling 
The piano soundboard is a wooden resonator with ribs on one 
side and bridges on the other one. It has complex geometry 
and material properties, which vary from instrument to 
instrument.  

The role of the soundboard in our piano model is twofold. 
Firstly, we use its modal description to parametrise the IIR 
filter set on string terminations (terminator). Secondly we 
calculate the sound radiation model from its motion (radiator). 
In the radiator case the soundboard model gets the string force 
on the termination as input and provides the soundboard 
displacement as output. 

The soundboard is modelled by means of the FEM solving the 
inhomogeneous plate and beam equations. The plate is split 
up into triangular elements, while the ribs are modelled using 
beam elements. The wood is modelled as a transversally 
isotropic or orthotropic material. For FEM modelling, we also 
implemented our own solution. 

In our example the soundboard has a shape as a modern grand 
piano. Its thickness is . On the soundboard there are 13 
ribs placed similar as on a real soundboard. The material 
damping of the soundboard has been assumed to take the 
constant value of . The soundboard edges are modelled as 
clamped. The material properties of the used transversally 
isotropic material are as generally used for pianos 
simulations: density is , Poisson-numbers are , 
Young-moduli are  and , and shear moduli 
are  and . 

The first 186 soundboard modes were used for modelling, so 
the IIR-filter set contains the same number of filters. The 
calculated first eigenfrequency is at  and the highest 
used at .  

 

Figure 8: Mode at 211 Hz of a transversally isotropic grand 
piano soundboard. 

 
Figure 9: Soundboard displacement at the termination of 
first (struck) string. 

Sound radiation modelling 
We handle the sound radiation as an independent subsystem. 
The model inputs are the forces on string terminations and the 
modal description of the soundboard. We calculate as model 
outputs the sound pressure in selected room positions. This 
data represents the radiated sound which can be heard.  

The sound radiation is modelled using the Rayleigh-integral. 
in the frequency domain. This modelling approach assumes 
that the soundboard is embedded in an infinite stiff plate. This 
hypothesis is valid only in nearfield. Although the model is 
very abstract, it has the advantage of small computational 
cost. The sound radiation model is implemented using a FIR-
filter set, where the filter coefficients are obtained by inverse 
Fourier transforming the velocity-pressure transfer functions 
obtained from the Rayleigh integral. 

In our example case, the observation point was placed 50 cm 
above the termination of the first string. (s.a. Figure 10.) 
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Figure 10: Sound pressure time history. 

Conclusion 
We implemented a complete piano model. Our system –
implemented in MATLAB – , is able to run on a desktop PC, 
enables to examine different parameter sets of a physical-
model based piano. As a next step we would like to optimize 
the running time, simulate other parameter sets and 
implement some other models (e.g. for sound radiation). In 
the future we would like to validate the simulation results with 
own measurement data.  
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