
Overview and Status of Binaural Rendering in Browsers

Michael Weitnauer
1

1 Institut für Rundfunktechnik, 80939 München, E-Mail: weitnauer@irt.de

Introduction

Simple audio playback and more sophisticated operations

used not to be natively possible with Internet Browsers until

a few years ago, hence Web developers had to use embedded

Flash applications or Browser Plugins like QuickTime for

such implementations. Due to security issues and platform

dependencies both of the mentioned possibilities are

nowadays deprecated and even disabled in the default

configuration of some Browsers.

The standardisation and the implementation of HTML5

made it for the first time possible to embed and control audio

or video elements as files or streams natively. However, the

conduction of signal processing operations was still not

possible. Hence, the W3C Audio Working Group started in

2011 an activity to standardise an API for sophisticated

audio signal processing in Browsers.[1] The resulting Web

Audio API (WAA) specification [2][3] evolved since then

and has been widely adopted in Browsers.

Web Audio API

The WAA enables handling basic audio operations in an

audio context and has been designed to allow modular

routing. Basic audio operations are performed with audio

nodes, which are linked together to form an audio routing

graph, see Figure 1. Several sources also with different types

of channel layout are supported. This modular design

provides the flexibility to create complex audio functions

with dynamic effects. The WAA nodes are controlled by

JavaScript Code which is embedded in the HTML

application and thus conducted on the end user device. The

JavaScript Code is steering typically C/C++ implementations

of the audio nodes in the Browser. The WAA nodes are then

applied in a real-time process onto the input or generated

signals.

Figure 1: Modular routing concept of the Web Audio API

(Source: https://developer.mozilla.org)

The Web Audio API specification defines currently,

amongst others, these nodes:

 ChannelSplitter and ChannelMerger may be used

for de-multiplexing and multiplexing of audio

channels from and to one stream

 BiquadFilter & IIRFilter represent modules for

low-order filter creation but also for sophisticated

IIR filter design using coefficients

 Gain nodes are used to apply a gain value

 DynamicsCompressor provides a compression

effect module

 Delay nodes may be used to apply a delay on the

signals

 Convolver represents a module which can be fed

with any impulse response to be convoluted with

the input signal

 Panner node interfaces represent the position and

behaviour of an audio source signal in space. They

produce either a Stereo panning or a binaural

output

 Oscillator and WaveShaper are used for signal

generation and shaping

 ScriptProcessor is a very flexible module to apply

any custom signal processing written in JavaScript

and offers an interface to each audio sample, block

by block

Figure 2: Example of a Web Audio routing with different

nodes (Source: https://webaudio.github.io/web-audio-api/)

An arbitrary example of a combination of these nodes is

depicted in Figure 2.

One of the key features of the Web Audio API is sample-

accurate scheduling of sound playback with low latency [3]

as it is also intended to be used for musical applications

which require a very high degree of rhythmic precision. This

also includes the possibility of dynamic creation of effects or

nodes. Very useful for sophisticated web audio applications

is also the possibility for an automation of audio parameters

to be used for envelopes, fade-ins / fade-outs, granular

effects, filter sweeps, etc.

Web Audio API Support

Even though the Web Audio API has not been released as a

stable version 1.0 yet, the majority of Browser

manufacturers are usually implementing the latest draft of

DAGA 2018 München

325

the specification. Figure 3 illustrates the current support in

the major Browsers. All current versions of relevant

Browsers support nowadays the Web Audio API. The only

major exceptions are the Internet Explorer, whose

development has been discontinued by Microsoft, and the

Opera Mini. However, it has to be noted that not all Browser

support the Web Audio API to the full or same extent.

Figure 3: Web Audio API support in Browser versions.

The current versions is grey highlighted. (Source:

https://caniuse.com/#feat=audio-api)

Considering the market share of Browsers worldwide and in

Germany (Figure 4), the latest Internet traffic user agent

statistics show that the coverage of Browsers that do support

the WAA is approximately 90% (worldwide) and 89%

(Germany).

Figure 4: Browser market share worldwide vs. Germany in

February 2018, based on Internet traffic and user agent

detection (data source: http://gs.statcounter.com/)

This makes the Web Audio API to an attractive possibility to

distribute sophisticated audio applications including binaural

renderings.

Binaural aspects of Web Audio

There are basically three options to apply binaural

renderings with the WAA.

(1) The ConvolverNode can be used along with an Head

Related Transfer Function (HRTF) or a Binaural Room

Impulse Response (BRIR). The convolution of the impulse

response(s) with the dry input signal(s) is then applied in

real-time.

(2) The PannerNode provides already an HRTF mode which

applies a convolution with HRTFs from an internal database

with the input signals that are positioned in a three-

dimensional space.

(3) The ScriptProcessorNode can be used to implement and

apply a custom binaural synthetisation, written in JavaScript.

It has to be noted that the ScriptProcessorNode is already

declared as deprecated in the latest draft of the specification.

(4) The recently introduced AudioWorkletNode will replace

the ScriptProcessorNode as soon as the implementation in

Browsers is complete and offers also the possibility to apply

custom signal processing. The main difference to the

ScriptProcessorNode will be that it is no more executed in

the Browser UI thread but within its own Web Audio thread.

This will reduce the risk of audible glitches and other

artefacts due to performance issues.

Each of the mentioned possibilities has advantages and

disadvantages and the choice of the appropriate solution

depends on the use case. If the computational complexity has

to be low, only the ConvolverNode and the PannerNode

should be used as the conduction of the custom code for

each block requires much performance of the CPU.

Depending on the number of nodes, too many custom

binaural synthetisations will cause audible artefacts. While

the usage of own impulse responses with the ConvolverNode

requires less CPU performance than a complete custom

binaural synthetisation using a ScriptProcessorNode, the

complexity is still higher than a binaural convolution with

the PannerNode which uses HRTFs from an internal

database.

Although the specification crucially lacks a documentation

on defined HRTFs for the PannerNode, one can get more

insights e.g. by researching the underlying source code for

open-source browsers such as Google Chrome or Mozilla

Firefox. According to T. Carpentier in [5], both Browsers

Chrome and Firefox use the same collection of HRTFs

which is adopted from the IRCAM Listen HRTF database

[4]. The HRTFs are available in a 15° resolution for both

azimuth and elevation and were created through averaging of

the (diffuse-field equalized) impulse responses and a

truncation to 256 samples at 44.1 kHz sampling rate (i.e. half

the length of the original IRCAM HRTFs). For a one degree

resolution of the HRTFs used by the PannerNode for

azimuth and elevation, the existing HRTFs from the internal

database are interpolated by the Browsers.

If performance is not an issue, the ScriptProcessorNode or

AudioWorkletNode offer great flexibility for custom

implementations. Especially the AudioWorkletNode seems to

be promising for complex operations.

The HRTF mode of the PannerNode offers additional

settings for the binaural rendering such as the distance model

(“exponential”, “linear” and “inverse”), the orientation and

the extent of sound sources in terms of width, height and

depth [3]. The listener’s perception of the binaural

PannerNode output can be modified with the WAA listener

DAGA 2018 München

326

interface. Additional to the three-dimensional position, the

orientation of the listener can be changed on the fly by

changing two vectors. The forward vector for the position at

which the nose is pointing and the up vector representing the

direction the top of a person’s head is pointing. Any

modifications to the PannerNode and the listener must be

applied sample-accurate by the Browser.

Examples

The following sections describe examples of

implementations which use the Web Audio API in the

context of binaural rendering.

Custom HRTF usage with BinauralFIR

A library for the usage of own HRTF or BRIR databases in

Web Audio applications has been released by IRCAM in

2015 [7][5]. It creates basically a custom WAA node that

offers an API to control the position of sound sources. It may

be mainly used for a binaural synthesis without changing

head rotations.

Figure 5: Basic concept of the binauralFIR library [5]

The binauralFIR library uses the ConvolverNode to apply the

convolution of the impulse responses with the input signal.

Figure 5 illustrates the basic concept behind. While the

library is useful for own HRTF datasets, it requires

compared to the PannerNode a higher CPU performance and

is thus not recommended for a large number of sound

sources. An example of the library can be found under [6].

Object-based audio rendering with bogJS

A new way to distribute audio content is the so-called

object-based audio approach where the individual elements

are only mixed together in the end device. This requires a

rendering stage and offers the opportunity to render a special

version for headphone listening. The IRT published a JS

framework for this approach in 2016. [8][9]

Due to performance reasons, it uses only the PannerNode for

binaural synthesis of sound sources. It offers multiple

options to use audio input signals, either connecting to the

HTML5 media elements which is useful for streams or

longer files, or by requesting shorter files via a

XMLHttpRequest and decoding them with the WAA

decodeAudioData() method.

Example demos of the framework are published under [10],

which demonstrates a user personalisation, and [11]. The

latter uses an interface of the Browser to device sensors such

as the accelerometer and magnetometer to detect the device

orientation. If the user rotates the (mobile) device, the 360°

video view and the WAA listener orientation is changed

accordingly. By combining the WAA and the

DeviceOrientation API [12], a head-tracked binaural

application can be realised.

Ambisonics encoding and decoding

Google published recently libraries for Ambisonics encoding

[13] and decoding [14], including a binaural synthesis of the

decoded Ambisonics channels. Its rendering process is

powered by the GainNode and ConvolverNode, ensuring the

optimum performance. It supports currently Ambisonics

decoding up to 3rd order and uses the SADIE HRTF database

from the University of York [15].

The basic concept of the Ambisonics decoder library

Omnitone for HOA is illustrated in Figure 6. A few

examples of the Omnitone library can be found under [16].

Figure 6: Basic concept of the Omnitone Ambisonics

decoder library [14]

The Resonance Audio SDK from Google [13] provides not

only a binaural Ambisonics rendering, but more importantly

it offers also a room model for the auralisation of sound

sources with their direct sound, early reflections and late

reverb for a customizable room. The room model supports a

large number of surfaces and the cuboid room dimensions

can be chosen freely. The auralisation is realised by using a

combination of many WAA nodes such as ConvolverNode,

BiquadFilterNode and GainNode. A demo application of the

room model web application using binaural rendering is

published under [17].

Issues of the Web Audio API

As already mentioned, the WAA has not yet been released in

a stable version 1.0. Although the Browser manufacturers

are usually implementing the latest draft in their releases,

DAGA 2018 München

327

there are differences in the support of WAA features and the

implementation of the features itself across browsers.

Usually the Browser releases for Desktop devices are

shipped with a more reliable and stable WAA

implementation, while the releases for mobile devices such

as Smartphones and Tablets differ sometimes in the

implementation. It may be assumed that this situation will be

improved once a stable version 1.0 has been published by

the W3C WG.

Since the usage of uncompressed audio signals in Web

applications is still not a realistic use case due to the large

bandwidth needed for only a few audio channels, the

distribution of encoded audio files and streams is common.

Due to various reasons, the Browsers have different

decoders integrated and also different implementations of

those. This means in practice that no reliable decoding

behaviour can be expected and thus should be tested. An

implementation of such a test was published in [9].

Although Chrome and Firefox are using the same HRTF

database, there are clearly large audible differences between

the databases of other Browsers as the HRTFs for the

PannerNode are not defined in the specification.

Future Development

A stable version 1.0 release is expected to be published by

the end of 2018. The Audio WG of W3C will then start the

work on the next major release of the specification, which is

aimed to be published in 2020.

In version 2.0, there will likely be an interesting new feature

for binaural rendering: the usage of custom HRTFs along

with the PannerNode, potentially represented in the SOFA

[18] format. This would allow a performance effective

binaural synthetisation of other HRTFs.

The implementations of the already mentioned

AudioWorkletNode in Browsers started and first

implementation may be tested with a special flag, see [19].

Summary

This paper introduced the use of the Web Audio API for

binaural rendering in Browsers. The WAA opens up new

perspectives and offers great opportunities for deployment of

binaural applications in many contexts as it is already widely

supported in current versions of Internet Browsers.

However, several restrictions of the current API were

described, too. A selected list of examples for the usage of

the WAA in the context of binaural rendering has been

presented as well.

References

[1] W3C Audio WG Charter, URL:

https://www.w3.org/2011/audio/charter/au

dio-2016.html

[2] Web Audio API, URL:

https://github.com/WebAudio/web-audio-

api

[3] Web Audio API Specification, URL:

https://webaudio.github.io/web-audio-

api/

[4] IRCAM Listen HRTF database, URL:

http://recherche.ircam.fr/equipes/salles

/listen/

[5] T. Carpentier, Binaural Synthesis with the Web

Audio API, 1st Web Audio Conference (WAC15),

Paris 2015

[6] BinauralFIR Example, URL:

http://ircam-

rnd.github.io/binauralFIR/examples/

[7] BinauralFIR Library, URL:

https://github.com/Ircam-RnD/binauralFIR

[8] M. Weitnauer and M. Meier, bogJS – A JavaScript

framework for object-based rendering in browsers,

2nd Web Audio Conference (WAC16), Atlanta 2016

[9] bogJS Library, URL: https://github.com/IRT-

Open-Source/bogJS

[10] IRT Lab, URL:

https://lab.irt.de/demos/object-based-

audio/RadioDrama/

[11] IRT Lab, URL:

https://lab.irt.de/demos/object-based-

audio/360/

[12] DeviceOrientation Event Specification, URL:

https://w3c.github.io/deviceorientation/

spec-source-orientation.html

[13] Resonance Audio, URL:

https://developers.google.com/resonance-

audio/

[14] Omnitone Documentation, URL:

https://googlechrome.github.io/omnitone/

[15] SADIE HRTF database, URL:

https://www.york.ac.uk/sadie-

project/GoogleVRSADIE.html

[16] Omnitone Examples, URL:

https://rawgit.com/GoogleChrome/omnitone

/master/examples/hoa-renderer.html

[17] Resonance Audio Room Model Examples, URL:

https://cdn.rawgit.com/resonance-

audio/resonance-audio-web-

sdk/master/examples/room-models.html

[18] AES Spatial acoustic data file format, AES69-2015

[19] AudioWorkletNode implementation in Chrome,

URL:

https://developers.google.com/web/update

s/2017/12/audio-worklet

DAGA 2018 München

328

