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Introduction

Acoustic source localization methods consist of algorith-
mic, stochastic or data-driven methods for estimating the
position or direction arriving sound originated from. It is
utilized in a number of assistive systems, such as hearing
aids [1], acoustic monitoring or voice control for ambient
assisted living environments [2, 3].

In addition, numerous applications in fields like e.g.
robotics [4] or in-car communication [5] are conceivable.
In traffic situations where emergency vehicles are de-
ployed, fast reactions and collaboration from traffic par-
ticipants are critical. For human drivers, the approach
of vehicles with high priority is usually signaled visually
and by the use of acoustic sirens, of which the latter may
be perceived even before a line of sight exists. For vehi-
cles whose driving process is automated to some degree,
this may pose a problem since an automated reaction in
this situation depends on different factors, for example
the direction an emergency vehicle is approaching from.

Although sirens exhibit a characteristic harmonic struc-
ture in spectral domain, the ratio between the power
of individual harmonics varies with distance, orientation
and direction of the vehicle. In addition, the well-known
phenomenon of the Doppler-Effect is observed as a fre-
quency shift, depending on the relative position and ve-
locity of both the emergency and the observing vehicle.
These effects are visualized in Figure 1.
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Figure 1: Spectrogram of a German firefighter siren in rela-
tively quiet environment. The vehicle is first moving towards,
then away from the observer on a straight path. The observer
position is fixed throughout the recording.

Traffic situations in which siren localization can be con-
sidered critical may display adverse acoustic conditions.
These make it critical for potential algorithms to be ro-

bust against noise interference which appear in everyday
traffic. In this work, acoustic source localization meth-
ods for integration in autonomous or semi-autonomous
driving are investigated and compared.

Methods

Various methods were considered to be applied for siren
localization. This work draws comparisons between three
algorithms, which are described in the following.

Signal Transfer Model

Usually localization is carried out using arrays of mul-
tiple microphones, so that resulting digital signals are
discrete with a sample index k and consist of multiple
channels. Signals are denoted as xm(k), where m is an
index of the mth out of M microphones. Their corre-
sponding Short Time Fourier Transform (STFT) spectra
will be denoted as Xm(n) where n is the discrete STFT
frequency bin index. Based on STFT spectra, recursive
Welch periodograms of power spectral densities are writ-
ten as matrix Φ(n) of dimensions M ×M for each bin.

Under the assumption of additive uncorrelated noise,
recorded signals xm(k) feature a channel-specific noise
component and an instance of the useful, correlated sig-
nal with a direction- and microphone-dependent delay.
As a consequence, many localization algorithms compute
correlation-related estimates.

Steered Response Power

The Steered Response Power (SRP, [6]) is a popular lo-
calization method which has already been applied to dif-
ferent environments (e.g. in-car speaker localization [5]).
The algorithm is based on delay-and sum-beamforming,
in such a way that for different locations or directions,
the output of beamformers steered towards them is com-
puted. Steering is done by applying individual time de-
lays to array channel inputs. The SRP algorithm can be
formulated as

PSRP(θ) =
∑

(m1,m2)

1

N

N−1∑
n=0

Ψ(n)Φm1,m2(n)e(j2π
n
N τm1,m2 (θ)).

(1)
with indices n for one of N STFT-bins and θ for an indi-
vidual direction. τm1,m2

(θ) describes the compensation
time delay for microphone m2 relative to microphone m1

associated with the direction θ, and Φm1,m2(n) the cross-
power spectral density of the corresponding signal chan-
nels, which in practice has to be estimated. As tuples
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(m1,m2) only valid unique combinations where m1 6= m2

are considered. Frequency-domain weighting can be ap-
plied to individual bands as Ψ(n), where Ψ(n) = 1 pro-
duces a non-weighted estimate. Assuming a single source,
a prediction of its position is computed as the maximum
value of P (θ).

Weighted Phase Transform

A popular method consists of combining the SRP with
the Phase Transform (PHAT) [7], which assigns a value
in range [0, 1] to each frequency bin. It is defined as

ΨPHAT(n) =
1

|Φm1,m2
(n)| . (2)

This is especially adequate for localization of broad-band
signals where the spectral power composition varies.
Since siren emissions only consist of few frequency com-
ponents, a modified weighting function ΨHORN(n) =
G(n) ·ΨPHAT(n) is considered, where G(n) is a gain com-
ponent based on a siren denoising algorithm.

Diagonal Unloading Beamforming

An alternative formulation of the compensation time de-
lay is a steering vector

a(n, θ) =
[
1, e

j2πn
N ,·τ1(θ), . . . , e

j2πn
N ·τM−1(θ)

]T
, (3)

with delay τm(θ) being the delay for microphone m rela-
tive to the reference microphone m = 0. Using this vec-
tor, the Diagonal Unloading beamforming algorithm for
source localization [8] is defined. Its output is computed
as

PDU(n, θ) =
1

aH(n, θ)(tr(Φ(n))I−Φ(n))a(n, θ)
, (4)

where ·H denotes the conjugate transpose, I an M ×M
identity matrix and tr(·) the trace operator.

Frequency Fusion

In order to produce an estimate from narrowband beam-
former output, a frequency fusion algorithm is necessary.
In addition to a simple arithmetic mean (as in equa-
tion 1), other methods can be considered, such as the
normalized arithmetic mean (NAM) [9]. It is defined as

PNAM(θ) =
∑
n

P (n, θ)

maxθ[P (n, θ)]
. (5)

Again, a localization estimate can then be computed as
the maximum value of PNAM(θ).

Support Vector Localization

Instead of explicit algorithmic formulations, data-driven
approaches to localization have also been proposed.
In a Support Vector Machine (SVM) classification ap-
proach [1], angular regions are assigned to classes of
width equal to the sampling range of beamforming-based

approaches. Using training data generated from micro-
phone array impulse responses, a model is fit to clas-
sify signal blocks into spatial regions based on pairwise
PHAT-weighted cross-correlations. More detailed infor-
mation on the procedure is found in [1]. In this docu-
ment, instead of PHAT a modified weighting was used
(see section ).

Evaluation Methods

In order to evaluate siren localization methods, experi-
ments with real traffic noise recordings were carried out.
Recordings of stationary siren signals from directions in
45◦-steps in the azimuthal plane were added. As evalua-
tion measures, the root mean squared error (RMSE) and
the accuracy were computed. In this context, accuracy is
defined as the proportion of estimates that were within
15◦ range of the correct direction.

In addition to that, an experiment with stationary sirens
in increasing source-receiver-distance were executed to
investigate the robustness of localization methods for dis-
tant sirens.

A third experiment featured recordings from a fire truck
passing by a microphone array, with the siren turned on
continuously. Since using alarm sirens without permis-
sion, e.g. in an emergency situation, is against the law
in Germany, these recordings were created on a former
air field with the assistance of local firefighters. Figure 2
illustrates the recording procedure. All recordings were
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Figure 2: Schematic illustration of the experiment carried
out in order to evaluate algorithmic performance for a moving
siren source.

created using an eight-microphone array also described
in [5].

Results and Discussion

Localization performance measures resulting from the ex-
periments with non-moving sirens and additive environ-
mental noise from a traffic-reduced zone and a busy town
square are shown in Tables 1 and 2, respectively. In
both situations, considered approaches show a very high
accuracy, with the RMSE values being slightly lower in
the town square situation. It should be noted that while
the spectral composition of both the target signal and
the environmental noise show characteristics featured in
real applications as well, the added difficulty of moving
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Table 1: Experimental results on localization of non-moving
sources in environmental noise recorded in a traffic-calmed
zone.

Method DU SRP SVM

Pre-/Postprocessing NAM HORN HORN

RMSE (degrees) 0.000 0.184 3.626

Accuracy 1.000 1.000 1.000
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Figure 3: Localization results for a standing emergency vehi-
cle siren over distance to receiver. Measurements were taken
approximately every 100 m, starting at 50 m.

sources and receiver vehicle are neglected. Another sim-
plification is that siren recordings used in this experiment
were taken from close proximity, while in reality emer-
gency vehicles should be locatable from distance already.

Table 2: Experimental results on localization of non-moving
sources in environmental noise recorded at an active town
square.

Method DU SRP SVM

Pre-/Postprocessing NAM HORN HORN

RMSE (degrees) 9.729 0.737 21.107

Accuracy 0.984 1.000 0.973

Figure 3 shows localization RMSE and accuracy for the
second experiment investigating robustness against dis-
tance. As is to be expected, localization error overall in-
creases with distance. As also observed in Figure 1, the
power of high frequency siren overtones decreases more
than for low frequencies, which in turn may diminish the
effectiveness of broadband weighting methods. In this ex-
periment, DU-NAM and SRP-HORN methods perform
equally well, while using the SVM-HORN algorithm re-
sults in lower accuracy and error.

The third experiment was carried out without measuring
ground truth direction of arrival-values. Following the
description of the recording process in section however,
it can be followed that the vehicle starts approaching the
array from the front, defined here as 0◦. The rate of di-
rectional change should increase the closer the fire truck
is to the array, and after passing by this trend should
reverse, with the vehicle ending up behind the array at
approximately 180◦. Since no ground truth data is avail-
able, only qualitative observations can be made. In Fig-
ure 4, results for individual STFT blocks computed with
the considered methods are displayed. Overall, all three
subplots feature the characteristic progression expected
from the recording procedure. It should be noted, how-
ever, that the SVM-HORN estimates feature a spread in
the beginning of the recording, where the vehicle is far
away from the receiver. This observation is consistent
with results from the previous experiment. SRP-HORN
and DU-NAM results also feature outliers, but in smaller
numbers. During the event of the truck passing the array
position at around 30 seconds, all three methods result
in the temporal progress expected from the experimental
design.
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Figure 4: Block-wise localization results using a recording of
a fire truck passing by at a constant speed of v = 100 km/h,
in the scenario outlined in Figure 2.
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Conclusions and Outlook

The experiments previously described and evaluated in-
dicate that localization of sirens in traffic situations is
viable. Of the algorithms utilized, the SRP-HORN and
the DU-NAM algorithm are considered to be particu-
larly suited for this task, as they were found to be more
robust against both traffic noise and distance effects on
siren signals. From the experiment featuring a moving
source, promising results were gathered as well. Still,
it remains to be investigated how effects from a moving
receiver position and corresponding engine sounds from
a fixed direction relative to the array influence localiza-
tion, and how these influences may be mitigated. In or-
der for the problem of siren localization to be solved in a
practical way, object tracking methods have to be consid-
ered, as temporal information can be be used to increase
robustness against outliers as observed in the third ex-
periment. Considering the fact that oftentimes larger
emergency operations feature multiple vehicles, practical
implementations of siren localization may need to em-
ploy multi-object tracking solutions in order to provide
reliable results.
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