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Introduction

The engineering field of aeroacoustics deals with the
numerical and experimental investigation of sound
propagation and generation in moving fluids, especially
air or water. For this purpose, suitable models must
exist which represent the physical processes with suitable
mathematical expressions.
The main ground-breaking ideas go back to Lighthill
and Newman [8], and are known as acoustic analogies,
see [7, 13] and references within. But there were also
critical opinions on this approach, see Doak [2], who
published a fabulous and easily understandable overview
of the topic.
Alternative approaches consist of separating the physical
quantities into mean values and fluctuations, whereby the
fluctuations are generally regarded as much smaller than
the mean values. A numerous number of publications
are available on the so-called Linearized Navier-Stokes
Eequation (LNSE), the Linearized Euler Equation
(LEE), or the Acoustic Perturbation Equation (APE).
For the latter see Ewert and Schröder [3]. All these
approaches follow the Eulerian framework of continuum
mechanics, which is typically used for investigating fluid
dynamics. In contrast, the Lagrange frame is used less
frequently. However, both frames possess advantages and
consequently an Arbitrary Lagrangian Eulerian (ALE)
framework was developed, see Belytschko et al. [1]. With
this class of framework applied for aeroacoustics, an
alternative approach known as Galbrun equation has
been developed and studied, see [4–6, 9, 10, 12], in which
the perturbations are defined in terms of a Lagrangian
displacement.
Following this approach, possibles ways of deriving
Galbrun’s equation together with possible sources are
discussed in this work.

Concept of ALE formulation

The basic concept of the ALE formulation is briefly
discussed in this section, as this will be a preparation for
the application to the conservation equations. Consider
an Euclidean space in R3 with a Cartesian coordinate
system with te base ei with i = 1, 2, 3. Two classical
frameworks of continuum mechanics exist, namely the
Lagrangian and the Eulerian frame. In the Lagrangian
frame, the observer is fixed to the material or the
continuum, whereas in the Eulerian frame the observer
is fixed in space and sees the continuum pass by as
it changes its configuration over time. In the ALE

formulation another domain is introduced, which serves
as a reference. As this reference can be chosen arbitrarily,
the naming of the frame is plausible. For deeper insight,
the reader is referred to the literature, see Belytschko et
al. [1].
Figure 1 presents the basic configurations for the
following relations. The main concept consists in the
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Figure 1: Basic configuration for describing aeroacoustics

definition of a mixed representation with respect to
the reference coordinates x. First, consider a physical
quantity Φ in an Eulerian frame. As mentioned in the
introduction, separation in mean and perturbation yields

Φ(yl, t) = Φ0(yl) + Φ′(yl, t), (1)

where the Eulerian perturbation is expressed with an
Φ′. In the Lagrangian frames this separation would be
with respect to an assigned material particle. However,
in the mixed frame the separation of quantities can be
formulated as

Φ(yl, t) = Φ0(xl) + Φ̃(xl, t), (2)

where Φ̃ denotes the Lagrangian perturbation of an
Eulerian quantity with respect to an arbitrary reference
position x. By utilizing equation (1) and (2) and
considering small deformations, the usual Eulerian
perturbation can be computed from the Lagrangian up
to first order as

Φ′(yl, t) = Φ̃(xl, t)− wj (Φ0(xl, t)) ,j . (3)

Note that for quantities followed by a comma and
an index, the spatial derivative applies. Furthermore,
Einstein’s summation convention shall be used for
repeating indices. From these definitions, a number of
general expressions arise which are stated subsequently.
First, the Lagrangian displacement is defined according
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to Figure 1 as

wi(t) = yi(t)− xi(t). (4)

Second, from basic principals of continuum mechanics
the deformation gradient F and the Jacobian J read

dyi = Fijdxj with Fij = δij + wi,j , (5)

J = detF or J =
1

6
elmnepqrFlpFmqFnr, (6)

where elmn denotes the Levi-Civita symbol.
Furthermore, the inverse of F reads

Gij = F−1ij =
1

J
Tji with (7)

Tij = (1 + wl,l)δij − wj,i +Nij and (8)

Nij =
1

2

(
w2
l,l − wm,nwn,m

)
δij − wl,lwj,i + wj,lwl,i. (9)

The equations stated above are particularly important
for deriving transformation rules of the gradient and
divergence operators with respect to the reference frame.
These rules are

P,j(yl, t) =
(
P0(xl, t) + P̃ (xl, t)

)
,i
Gij(xl, t), (10)

Pj,j(yl, t) =
1

J(xl, t)

[(
P0i(xl, t) + P̃i(xl, t)

)
Tij(xl, t)

]
,j
,

(11)

where P represents a tensor of arbitrary but sufficient
order. For deeper insight, the reader is referred to
Minotti et al. [10].
All necessary information has been presented to derive
Galbrun’s equation.

Application to fluid dynamics

In order to apply the presented relations, the general
equations of fluid dynamics must be recalled. In the
conventional Eulerian frame, these equations read

Dρ

Dt
= − ρ vl,l (12)

ρ
Dvj
Dt

= σji,i + fj (13)

ρ
De

Dt
= σklvk,l − qj,j + ϑ̇. (14)

and are known as balance of mass, momentum and
energy. Here, ρ represents the fluid density, v the
velocity, σ the Cauchy stress tensor, f body forces, e the
specific inner energy, q the heat convection, and finally
ϑ̇ additional heat sources. The equilibrium of angular
momentum is implicitly satisfied by the symmetry of σ,
which is defined as

σij = −pδij + τij , (15)

where p is the pressure and τ the viscous stress tensor.
Using the well-known Gibb’s theory, equation (14) can
be converted to an entropy equation, which yields

ρ
Ds

Dt
=

1

T

[
τklvk,l − qj,j + ϑ̇

]
, (16)

where T denotes the temperature. Last but not least,
D()
Dt denotes the material time derivative.

For simplification, the following assumptions apply.
First, heat sources and heat conduction are neglected.
Second, only small perturbations are considered, which,
after following the outlines of Minotti et al. [10], yields

J = 1 + wl,l, (17)

Tij = δij − wj,i + wl,lδij , (18)

ρ̃ = −ρ0wl,l. (19)

As a next step, all presented relations are used and
inserted into the balance equation of momentum, cf.
equation (13), while considering the mixed representation
of all quantities, cf. equation (2). In addition,
the Lagrangian velocity perturbation is defined as the
material time derivative of the Lagrangian displacement
as ṽ = Dw

Dt , where the material time derivative reads
D()
Dt = ∂()

∂t + v0k(),k.
After some cumbersome rearrangements, the following
mathematical expression can be stated.

G{w}+ Gτf{w}+ GNL{w} = S0 + S1, (20)

where on the left-hand side of equation (20) all
components are located that can be related to wave
propagation and on the right-hand side, possible sources
appear. They read

G{w} = ρ0
D2wk
Dt2

+ p0,kwq,q − p0,lwl,k + p̃,k, (21)

Gτf{w} = τ0ki,jwj,i + τ0kiwj,ij − τ0kj,jwl,l− (22)

− τ0kjwl,lj − f0kwl,l,
GNL{w} = − p̃,jwj,k + τ̃ki,jwj,i + p̃,kwl,l− (23)

− τ̃kj,jwl,l − τ̃kjwl,lj − f̃kwl,l,

S0 = − ρ0
Dv0k
Dt
− p0,k + τ0kl,l + f0k, (24)

S1 = τ̃kj,j + f̃k. (25)

In detail, G{w} denotes the usual Galbrun operator,
Gτf{w} contains wave propagation effects due to
viscosity and body forces with respect to the reference
flow Φ0. Furthermore, GNL{w} retains all nonlinear
components arising from the mathematical derivation
and can be set to zero, since only small perturbations are
considered. Note that with regard to acoustic analogies,
the nonlinear terms GNL{w} can be shifted to right hand
side. In this case, the nonlinear terms can be assumed
as pseudo sources with respect to the linear propagation
terms on the left. Such source terms could be calculated
from a precise CFD simulation within the source region
as part of a hybrid flow/acoustic analysis [13].
However, on the source side of equation (20), two main
source contributions can be identified, where S0 contains
all possible source components of the reference flow
and S1 presents sources due to fluctuations within the
viscous stress tensor as well as body force fluctuations.
Therefore, equation (20) can be written as

M{w} = G{w}+ Gτf{w} = S0 + S1. (26)
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Since up to this point, nothing has been declared neither
with respect to the constitutive equations nor to the
reference flow, equation (26) can be seen as a generalized
form of Galbrun’s equation for small perturbations.
A similar approach can be applied to the entropy balance
equation, cf. equation (16), which yields

ρ0
Ds̃

Dt
= E0 + E1, (27)

where

E0 = −ρ0
Ds0
Dt

+
1

T0
τ0klv0k,l, (28)

E1 =
1

T0
(τ0klṽk,l − τ0klv0k,iwi,l + τ̃klv0k,l) . (29)

Note for this case that the temperature perturbation
T̃ has been set to zero and again nonlinear terms have
been dropped.

The perspective towards sound

To close the system of equations, suitable constitutive
relations must be declared. Usually, when describing
sound propagation as a fluctuation of the ambient
pressure, it is a valid assumption that heat conduction
can be neglected. This result stems from the fact that
for low frequencies heat production due to conduction
is weaker than for higher frequencies. Here, the
term low frequencies includes the audible range, see
Pierce [11]. Furthermore, an ideal gas is considered and
the constitutive relation can be assembled as

p̃ = c2ρ̃+ c2
(
ρ0
cp

)
s̃. (30)

It is assumed that the entropy perturbations for the
thermodynamic process of wave propagation are zero and
therefore s̃ = 0. In the case of small perturbations, the
pressure fluctuations are simply

p̃ = −c20ρ0wl,l, (31)

where equation (19) has been used. The final set of
equations consists of (19), (26), together with (21), (22),
(24), and (25) as well as (27) for which s̃ = 0 and (28)
together with (29), and last but not least (31).
It is now up to the specific case for which sources or
propagation effects can be neglected in order to simplify
the governing equations.

Discussion of sources

In this section, the sources of the generalized Galbrun’s
equation as well as the entropy equation are discussed.
By taking a closer look at equation (24), one
identifies that the reference quantities Φ0 reassemble the
momentum equation (13). So far, the reference flow is sill
arbitrary. In the case that the reference quantities fulfill
equation (13), the reference flow will not excite any wave
propagation. In the case where the flow is stationary and
any viscous effects as well as body forces are neglected,

the only source of sound is the time-varying gradient
of the reference pressure −p0,k, which is in agreement
with the results of Gabard et al. [4]. Note that likewise
the generalized Galbrun’s equation reduces to the usual
form, since Gτf{w} = 0. It can be seen that, depending
on the restrictions towards the reference flow, sources of
Galbrun’s equation can easily be constructed.
Taking a closer look at the entropy equation (27) with
its potential sources (28), and (29), while recalling that
s̃ = 0, one can see that

ρ0
Ds0
Dt

=
1

T0
(τ0klv0k,l + τ0klṽk,l− (32)

− τ0klv0k,iwi,l + τ̃klv0k,l)

remains. Equation (32) can be seen as a physical
restriction with respect to the reference flow.

Derivation from energy principles

As a final remark, the derivation of Galbrun’s equation
can be conducted based on energy principles, which are
briefly discussed as follows.
All external sources of energy can be formulated as

U = Fk
∂wk
∂t

+ p̃
∂B

∂t
. (33)

Here, Fk represents possible sources of

ρ0
D2wi
Dt2

+ p̃,i + p0 ,iwl,l −
1

ρ0c20
p0 ,i (p̃+ wkp0 ,k) = Fi.

(34)

Furthermore, B represents external sources of

wl,l +
1

ρ0c20
p0 ,i (p̃+ wkp0 ,k) = B. (35)

Note that by utilizing equations (34) and (35), Galbrun’s
equation can be recalled. After some manipulations, the
following expression can be derived

∂E

∂t
+ Ik,k = U, (36)

where

E =
1

2ρ0c20

(
p̃2 − (wkp0,k)

2
)

+ ρ0
∂wk
∂t

Dwk
Dt
− (37)

− ρ0
2

Dwk
Dt

Dwk
Dt

+
wk
2
wk,lp0,l

and

Ik = p̃
∂wk
∂t

+ ρ0v0k

(
∂wk
∂t

Dwk
Dt

)
. (38)

For the cases in which a gravity potential needs to be
taken into account, one can refer to Godin [6].

Conclusion

In this work, after presenting a general introduction
to field and the main concept of an ALE framework,
the generalized concept was applied to fluid dynamics
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in order to arrive at a generalized form of Galbrun’s
equation. Note that only small perturbations where
considered. This form of Galbrun’s equation allows one
to retain possible sources depending on the assumption
that apply to the reference flow. In addition a
possible way of deriving Galbrun’s equation from energy
principals has been recalled.
With the presented outlines it is possible to easily identify
possible sources of Galbrun’s equation. Furthermore, the
concept offers a possible way for extending the theory
towards the analysis of problems for which thermo-
viscous effects play an important role.
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