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Introduction

Lighthill’s analogy is an exact reformulation of the fluid
dynamic equations into an inhomogeneous wave equa-
tion. Thereby, the source term not only accounts for the
generation of sound but also acoustic non-linearity, con-
vection, and refraction of sound waves by the flow, as
well as attenuation due to thermal and viscous actions.
To compute the flow-induced sound, one needs Lighthill’s
tensor for which the full set of compressible flow dynam-
ics equations have to be solved. However, for low Mach
number flows, the Reynolds stress tensor is the leading
order term, which can be obtained by an incompressible
flow computation. Furthermore, we want to note that
Lighthill’s inhomogeneous wave equation with the phys-
ical correct boundary conditions can be applied to any
aeroacoustic application and the second spatial deriva-
tive of Lighthill’s tensor contains all physical aeroacoustic
source terms.

Lighthill’s analogy

Historically, the proposed acoustic analogy by Lighthill
[1, 2] transformed the compressible flow equations into
an exact inhomogeneous wave equation, without any
physical approximation and assumptions to boundaries.
Lighthill’s inhomogeneous wave in terms of the fluctuat-
ing density ρ′ reads as

∂2

∂t2
ρ′ − c2∇ · ∇ρ′ = ∇ · ∇ · T . (1)

In (1), Lighthill’s tensor T represents all remaining terms
when rearranging mass and momentum equations

T = ρuu− S + p′I− c2ρ′I . (2)

In (2) u denotes the flow velocity, S the viscous stress
tensor, p′ the pressure fluctuation, I the unit tensor, and
c the speed of sound. Please note that the terms in T not
only account for the generation of sound, but also include
acoustic nonlinearity, the convection of sound waves by
the turbulent flow velocity, refraction caused by sound
speed variations and attenuation due to thermal and vis-
cous actions [3]. Lighthill proposed the solution of (2)
by using Green’s function for free field radiation. The
obtained integral equation is defined by

c2ρ′(x, t) =
1

4π

∞∫
−∞

∂2Tij(y, t− |x− y|/c0)

∂xi∂xj

dy

|x− y|

(3)

with the source coordinate y and x the coordinate at
which the density fluctuation is computed. In (3),
also know als Lighthill’s integral formulation, the term
∂2Tij/∂xi∂xj may be interpreted as a quadrupole, due
to the use of Green’s function for free radiation. In do-
ing so, resonators and bodies in the neighborhood of the
sources as well as diffraction, scattering, absorption, and
reflection by solid boundaries are neglected. Curle [4]
investigated the effects of surfaces at rest in the con-
text of the integral solution of Lighthill’s theory. Sur-
faces at rest are equivalent to a surface dipole distribu-
tion. Ffowcs Williams and Hawkings [5] extended Kirch-
hoff’s formula [6] and generalized the integral solution
towards accounting for arbitrary moving bodies in the
source domain. The second approach focuses on the solu-
tion of Lighthill’s inhomogeneous wave equation by a vol-
ume discretization method (e.g., Finite-Volume method,
Finite-Element method, etc.) equipped with appropri-
ate boundary conditions, see e.g. [7, 8, 9, 10, 11]. In
doing so, the interpretation of Lighthill’s source term
being the right hand side of (1) as a quadrupole type
term is physically wrong because the boundary condi-
tions specify the radiation pattern. In [12] it was suc-
cessfully demonstrated that the surface distribution of
Curle’s analogy is equivalent to the scattering of sound
waves by the rigid surface, which is originally generated
by the volume distribution of quadrupoles (second spatial
derivative of Lighthill’s tensor).

In summary, the whole set of compressible flow dynamics
equations have to be solved in order to be able to calcu-
late Lighthill’s tensor and therefore the right-hand side
of (1). However, this means that we have to resolve both
the flow structures and acoustic waves, which is an enor-
mous challenge for any numerical scheme and the com-
putational noise itself may strongly disturb the physical
radiating wave components [13]. Therefore, in the theo-
ries of Phillips and Lilley interaction effects have been, at
least to some extend, moved to the wave operator [14, 15].
These equations predict certain aspects of the sound field,
surrounding a jet, quite accurately. These aspects are
not accounted for Lighthill’s equation (1), due to the re-
stricted numerical resolution of the source term.

Lighthill’s analogy for low Mach number

For practical applications of Lighthill’s analogy, it is ben-
eficial to know the leading order term of Lighthill’s ten-
sor. This analysis has been done in [16] for low Mach
number flows in an isentropic medium by applying the
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method of matched asymptotic expansion (see, e.g., [13]).
Sound emission from vortical flow structures involves
three length scales: the eddy size l, the wavelength λ of
the sound, and a dimension L of the region. The problem
is solved for Ma� 1 and L/l ∼ 1 by matching the com-
pressible eddy core scaled by l to a surrounding acoustic
field scaled by λ. Thereby, Lighthill’s solution is shown
to be adequate in both regions, if Tij is approximated by

Tij ≈ ρ0uic,iuic,j (4)

with uic the incompressible flow velocity. Such a flow
field is described by solving the incompressible fluid dy-
namics equations. Thereby, we obtain an incompressible
flow velocity uic and pressure pic. Since for incompress-
ible flows, the divergence of uic is zero, we may rewrite
the second spatial derivative of (4) by

∂2

∂xixj

(
ρ0uic,iuic,j

)
= ρ0

∂uic,j
∂xi

∂uic,i
∂xj

. (5)

Furthermore, applying the divergence to the conservation
of momentum provides the following equivalence (using
∇ · uic = 0) [17]

∇ · ∇pic = −ρ0
∂2uic,iuic,j
∂xi∂xj

. (6)

With such an approach, we totally separate the flow from
the acoustic field, which also means that any influence of
the acoustic field on the flow field is neglected. Thereby,
we arrive at the following subset of Lighthill’s equation

1

c2
∂2p′

∂t2
−∇ · ∇p′ = ∇ · ∇pic (7)

for the fluctuating pressure p′. Here, we have assumed
an isentropic fluid state relating the density fluctuation
ρ′ with the pressure fluctuation p′ via the speed of sound
c. Applying a decomposition of the fluctuating pressure
p′ in its incompressible part pic and its acoustic part pa
via

p′ = pic + pa

transforms (7) into

1

c2
∂2pa
∂t2

−∇ · ∇pa =
−1

c2
∂2pic
∂t2

, (8)

which was named AWE (Aeroacoustic Wave Equation)
[18]. Thereby, (8) is equivalent to Ribner’s dilatation
equation [19], who reformulated the fluctuating density
ρ′ of Lighthill’s analogy via

c2ρ′ = p′ = p0 + pa

and named p0 the pseudo part. For further discussion
and a comprehensive overview, we refer to [20].

Application

As a first demonstrative example, we choose a cylinder
in a cross-flow, as displayed in Fig. 1. Thereby, the
computational grid is just up to the height of the cylinder

Figure 1: Computational setup for flow computation.

and together with the boundary conditions (bottom and
top as well as span-wise direction symmetry boundary
condition), we obtain a pseudo two-dimensional flow
field. The diameter of the cylinder D is 1 m resulting
with the inflow velocity of 1 m/s and chosen viscosity in a
Reynolds number of 250 and Mach number of 0.2. From
the flow simulations, we obtain a shedding frequency of
0.2 Hz (Strouhal number of 0.2). The acoustic mesh is
chosen different from the flow mesh, and resolves the
wavelength of two times the shedding frequency with 10
finite elements of second order. At the outer boundary
of the acoustic domain we add a perfectly matched layer
to efficiently absorb the outgoing waves. For the acoustic

Lighthill: ∇ · ∇ · [L] Lighthill: ∇ · ∇pic

AWE: 1/c20 ∂
2pic/∂t

2 PCWE: ∂pic/∂t

Figure 2: Computed acoustic field (in case of PCWE and
AWE) and pressure fluctuation (in case of Lighthill) with the
different formulations.

field computation we use the following formulations:

- Lighthill’s acoustic analogy with Lighthill’s tensor
T according to (4) as source term

- Lighthill’s acoustic analogy with the Laplacian of
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the incompressible flow pressure pic as source term
(see (7))

- the aeroacoustic wave equation (AWE) according to
(8)

- Perturbed Convective Wave Equation (PCWE) [21],
which is an exact reformulation of the acoustic per-
turbation equations for low Mach number [22]; for
comparison, we set the mean flow velocity v̄ to zero.

Figure 2 displays the acoustic field / pressure fluctua-
tions for the different formulations. One can clearly see
that the acoustic field of PCWE (for comparison with
the other formulations we have neglected the convective
terms) meets very well the expected dipole structure and
is free from dynamic flow disturbances. Furthermore, the
acoustic field of AWE is quite similar and exhibits almost
no dynamic flow disturbances. Both computations with
Lighthill’s analogy show flow disturbances, whereby the
formulation with the Laplacian of the incompressible flow
pressure as source term shows qualitative better result as
the classical formulation based on the incompressible flow
velocities. Please note that the solution of Lighthill’s in-
homogeneous wave equation according to (1) with (4) as
well as (7) results in the pressure fluctuation p′, which
includes both the aerodynamic flow pressure fluctuation
and the acoustic pressure. Therefore, one has to evaluate
p′ outside the flow region to obtain the acoustic pressure
pa. Please consider that due to the restrictions of numer-
ical schemes the solution of p′ in the far field may result
in a disturbed acoustic pressure pa.

The second example performs aeroacoustic computations
of the human voice. Thereby, the incompressible flow is
computed for the larynx (see Fig. 4) [23]. The geometry
of the vocal folds are modeled according to the “M5”
model with a medial surface convergence angle of ψ =
−20◦. To simulate the vocal folds oscillation a sinusoidal
motion is prescribed in inferior and superior direction,
given by

w = A sin(2πf). (9)

Thereby, a frequency of f = 100 Hz and a oscillation am-
plitude of A = 4 mm is used, ensuring that the minimal
gap between the two vocal folds of g = 0.2 mm is kept
[23].

For the acoustics, the vocal tract model is attached to the
larynx and consists of multiple frustums concatenated
one after another. The number of frustums and their
radius determines the resulting sound radiating from the
artificial mouth, and the case models the vocal tract for
/u/ (“who”).

For the evaluation of the acoustic pressure and the com-
parison of the hybrid approaches, two monitoring points
are considered. The first “MIC 1” is situated at the end
of the larynx, inside the flow domain. “MIC 2”, the sec-
ond monitoring point, is 1 cm behind the vocal tract, in

Acoustic grid
CFD grid

Mic 1

Figure 3: Geometric model of the human larynx in coronal
section. Comparison of the fine CFD grid and coarse acoustic
grid.

Figure 4: Larynx, vocal tract, propagation region, perfectly
matched layer (PML) regions.

the acoustic propagation region (see Fig. 4). For these
two monitoring points the spectra of pressure fluctuation
(in case of Lighthill) and acoustic pressure (in case of
PCWE) are plotted in Fig. 5 and Fig. 6. As expected,
Lighthill’s approach based on the fluctuation pressure p′

has significantly stronger amplitudes inside the flow re-
gion, as evident in Fig. 5. Comparing the splitting of
the field quantities, between Lighthill’s approach and the
PCWE approach, it is clear that the resulting pressure
solving (6) is superimposed by the incompressible flow
pressure pic. By theory, this superimposition does not
propagate into the far field as Fig. 6 shows. However,
due to numerical restrictions, Lighthill’s wave equation
also shows some over-prediction of the SPL.

Figure 5: Spectra of pressure fluctuation (in case of Lighthill
denoted by PL) and acoustic sound pressure SPL (in case of
PCWE) at position Mic 1.
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Figure 6: Spectra of obtained acoustic sound pressure SPL
both for Lighthill and PCWE at position Mic 2 (outside the
flow region).
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