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Abstract 
This paper focuses on the scattering effect of a finite 
perforated plate suspended from a rigid backing. In the 
considered frequency range up to 5 kHz, the period of the 
perforation is much shorter than the wavelength of the 
incident wave. Therefore, a perforated plate behaves as a 
flat homogeneous plate with uniform porosity. Thus, only 
the specular reflected wave is transmitted from the 
perforated plate to the far field, provided the plate is infinite. 
As a result, scattering effects are caused by the finiteness of 
the structure. As the finite length of the specimen increases, 
the scattering coefficient tends towards zero. Nevertheless, 
the perforated plate modifies the directional distribution of 
the reflected sound pressure by its absorption. If the quarter 
wavelength of the sound wave is equal to the suspension 
height of the perforated plate, the absorption of the 
perforated plate is maximized. If the absorber dissipates 
energy from the specular reflection direction, the scattering 
coefficient rises. Finally, the peak and dip frequencies of the 
scattering coefficient correspond well with those of the 
absorption coefficient. 

Introduction 
The reverberation time is a classic but still important 
measure in the field of room acoustics. The absorption 
coefficient of the surface elements is considered as the 
largest factor influencing the reverberation time. Scattering 
also affects the reverberation time, as scattering is related to 
the diffuseness of the sound field in the room. 

Suspended ceilings with perforated facings have been 
commonly used as sound absorbers in rooms for many 
years, because they can produce high absorption at low 
frequencies. This absorption has been studied in detail [1], 
while less attention has been paid to the contribution of the 
periodic perforation to the scattering of the acoustic sound 
field [2]. One of the reasons for this is that the measurement 
of the scattering coefficient of a highly absorbing material 
becomes inaccurate [3]. Furthermore, when absorption is 
high, the direction of the remaining little energy is rather 
unimportant. Nevertheless, improving the scattering 
coefficient of the absorber promotes the diffuseness of the 
sound field and reduces the reverberation time, particularly 
in the frequency range where absorption is low.

In this paper, the scattering coefficient is computed 
numerically by using the Boundary Element (BE) and Finite 
Element (FE) hybrid method [3] with COMSOL. In order to 
evaluate the scattering effects due to the periodic non-flat 
surface and the finiteness of the structure separately, both 
infinite and finite models are considered. 

Scattering Coefficient 
The scattering coefficient refers to the ability of a surface to 
remove energy from the specular reflection direction. It is 
defined [3, Sec. 4.5] by the ratio of the diffusely reflected 
sound power, Idiff, to the totally (diffusely + specularly) 
reflected sound power, It, as 
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The measurement procedure for the random incidence 
scattering coefficient is defined in [4] using a turntable in a 
reverberation chamber. The scattering coefficient under 
plane wave incidence can be measured in an anechoic 
chamber using a turntable [3, Sec. 4.5.2]. However, it is 
numerically expensive to simulate the physical arrangement 
using a turntable.  

Alternatively, Mommertz [5] proposed to compute the 
scattering coefficient using the directional distribution of 
the scattered pressure of the sample and the reference plane 
plate in free field. The scattering coefficient is expressed by  
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where ps denotes the scattered sound pressure of the sample 
in the far field and pref denotes that of the reference plane 
plate, which has the same surface area as the sample. The 
front surfaces of both specimens are located at the same 
coordinates. A bar above the symbol (Macron) denotes the 
spatial mean over the receiver array, and an asterisk denotes 
the complex conjugate. The validity of the Mommertz 
method, in accordance with ISO17497, has been confirmed 
in [6]. 

Numerical Models 
Infinite Model 
The suspended ceiling studied consisted of a perforated 
plate with 12 mm thickness backed by an air cavity of 
188 mm, giving a total suspension height of 200 mm. 
Although a perforated plate often has a thickness of 
12.5 mm, the effect of 0.5 mm difference on the scattering 
coefficient is negligible. The circular perforations with 8 
mm diameter are periodically distributed with a spatial 
period L0 = 18 mm in both directions.  

COMSOL is able to handle infinite geometries with 
rectangular periodicity (rectangular unit cell and no offset 
between neighbouring unit cells). The acoustic pressures at 

DAGA 2020 Hannover

862



parallel boundaries of the unit cell can be related to each 
other. They differ only in their phases [7, Ch. 7]: These 
boundary conditions are called “Floquet Periodicity” in 
COMSOL. With the additional items “Background Pressure 
Field“ and “Perfectly Matched Layer (PML)“ for the 
infinite extension perpendicular to the partition, a 
COMSOL model for the scattering of an incident plane 
wave is readily obtained by extending the unit cell. In this 
way, the computation time for predicting the sound 
scattering of infinite periodic structures can be significantly 
reduced as compared to the finite model discussed in the 
subsequent section.  

As mentioned above, the Mommertz method requires the 
scattered sound field of a plane plate of the same dimensions 
as the sample for reference. For the infinite plate under the 
excitation of a plane wave pinc, the reflected sound field pref

can be analytically derived as:  
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where P0 is the sound pressure amplitude of the incident 
wave and kx, ky, and kz are the wavenumbers along the x, y, 
and z-axes. z0 is the z-coordinate of the front surface of the 
sample and the reference plate.   

Finite Model 
In case of finite structures in free space, the Boundary-
Element-Method (BEM) is applied to model the free field, 
while the Finite-Element-Model (FEM) is applied for the air 
cavity between the perforated plate and the rigid backing. 
As illustrated in Fig. 1, the perforated plate is mounted on 
the front face of a box, composed of impervious rigid 
surfaces [3]. The width/depth ratio of the box must be high 
enough, otherwise the scattering from the edges dominates, 
not that from the surface roughness. According to [4], the 
diameter of a turntable should be at least 16 times bigger 
than the sample depth. Accordingly, the box has a height of 
0.2 m and a length of 3.24 m, in which 360 perforation 
periods are included. The background pressure field in the 
infinite model is replaced by a monopol acoustic source 
located at Rm = (R cos , R sin ), where R denotes the 
distance between the centre of the sample surface to the 
monopole. R should be sufficiently far, such that an incident 
plane wave can be assumed on the surface. is the polar 
incident angle (see Table 1). An anechoic termination of the 
sound field is not required for BEM.  

An array of receivers on a semi-circular curve, located 
symmetrically over the sample, detects the total sound 
pressure, pt, which is a combination of the background 
sound field pbg and the scattered sound field ps. The 
background sound field can be computed by removing the 
reflecting structure. The scattered sound waves from the 
sample consist of propagating and non-propagating 
(evanescent) waves. Considering the fact that the 
evanescent waves decay exponentially with distance, the 
receiver array should be located far from the sample surface: 
the distance needs to be much larger than the sample size of 
3.24 m.  

In both finite and infinite models, the perforated plate is 
assumed to be rigid and impervious. The discretized model 
follows the rule of six elements per minimum wavelength at 
the maximum frequency of 5 kHz. The vicinity of the 
perforation is segmented by finer elements because of near 
field effects. As the perforation diameter is relatively large 
compared to the viscous layer thickness, viscous boundary 
layer losses and thermal losses are neglected. The geometry 
and the material properties of the sample setup are 
summarized in Table 1. 

Table 1: Geometric and material parameters 
Parameter Value
Air  Speed of sound 343 [m/s] 

Density 1.21 [kg/m3] 
Perforation 
(circular) 

Hole diameter 8 [mm] 
Period 18 [mm] 
Thickness 12 [mm] 

Fleece Thickness (not counted) 0.2 [mm] 
Specific flow resistance 265 [N sec/m3] 
Surface density 0.05 [kg/m2] 

Box  Height, Hb 0.200 [m] 
Length Lb 3.24 [m] 

Excitation Monopole Strength, Prms 1 [W/m] 
Location, Distance, R 100 [m] 
Location, Polar angle,   45 [deg] 

Figure 1: Schematics of the finite model of the perforated 
plate on the box.  

Results 
Infinite Perforated Plate 
In the considered frequency range between 50 and 5000 Hz, 
the scattering coefficient of the infinite perforated plate 
backed by an air cavity results in values of about 10-5 for all 
oblique angles of incidence. This result indicates that the 
perforated plate reflects the incident sound wave only 
specularly, because the perforation period is much shorter 
than the considered wavelength. The period of the 
perforation is L0 = 18 mm, which is nearly 4 times shorter 
than the minimum acoustic wavelength of 68 mm at the 
maximum frequency of 5 kHz. While the period is much 
shorter, the directions of the reflected waves follow Snell’s 
law, and the diffusely reflected sound waves decay 
exponentially (evanescent waves).  

If the period exceeds one wavelength, scattered waves are 
directed in various directions ("diffracted waves"). The 

DAGA 2020 Hannover

863



condition for the m-th diffracted wave to be scattered into 
the far field is given by: 

22 2
0c mG k , (4) 

where c0 denotes the speed of sound, k is the wavenumber 
vector, and Gm is the m-th reciprocal lattice vector of the 
periodic geometry [7, Ch. 7]. Equation (4) indicates a cut-
on frequency, below which only the diffraction order of 
m = 0 (specularly reflected wave) radiates into the far field. 
At normal incidence, the diffracted wave of lowest order is 
radiated from the perforated plate at fcut-on = 19.1 kHz, which 
is far above the frequencies of interest.   

Finite Perforated Plate 
Figure 2 compares the scattering coefficient of two finite 
structures: a rigid box without surface plate (black line), 
below referred to as open box, and the perforated plate 
mounted on a rigid box (red line). Below 1 kHz, both curves 
show a very similar tendency. The scattering coefficient 
gently increases with small oscillations and reaches the first 
broad maximum with approximately s = 0.37 at around 400 
Hz. The oscillations are due to the interaction between the 
scattered waves generated by the parallel edges of the box. 
When the box width is an integer multiple of the 
wavelength, the scattering coefficient is low, and when the 
box width is half a wavelength longer, the coefficient shows 
a peak. Above 1 kHz, the red curve starts oscillating 
strongly around the black curve with three sharp peaks at 
around 1.6 kHz, 2.8 kHz, and 4 kHz. These peaks coincide 
well with the resonances of the distributed Helmholtz 
resonator, which characterizes the perforated plate backed 
by a cavity [8]. Under an oblique plane wave excitation of 
45 degrees, the resonant frequencies of the distributed 
Helmholtz resonator are given by 0.41, 1.5, 2.7, and 3.9 kHz 
[9, Ch. H.2].  

Figure 2: Scattering coefficient of the open box (black line) 
and of the perforated plate (red line).  

Figure 3 shows the polar diagram of the scattered sound 
pressure on the semi-circular receiver at 1.6 kHz, which is 
the first sharp peak frequency of the scattering coefficient 
in Fig. 2. Both polar diagrams show very similar lobes, only 
small deviations are visible along the direction of ±45 
degrees: Along the specularly reflected direction of -45 
degrees, the red lobe is slightly smaller than the black lobe, 

while the red lobe is bigger along the incident angle of 45 
degrees.  

If no damping material is introduced into the system and the 
acoustic dissipation is excluded by the viscous and heat-
conduction losses in the numerical model, the perforated 
plate backed by a cavity hardly dissipates sound energy. 
Therefore both polar diagrams show similar amplitudes. At 
a resonance of the resonator, the specularly reflected wave 
is well cancelled by the reflected wave from the bottom of 
the box [10]. As dissipation is not considered, the sound 
energy shifts to other directions, particularly to the incident 
angle, as shown in Fig. 3. As the sound energy is removed 
from the specular reflection direction, the scattering 
coefficient increases.  

The results indicate that the reflected sound field is diffused 
due to (i) the finiteness of the specimen and (ii) the 
resonance of the Helmholtz resonator, but not due to the 
perforated facing. 

Figure 3: Polar diagram of the reflected sound field from the 
open box (black line) and from the perforated plate (red line) 
at 1.6 kHz. The arrows indicate the directions of the oblique 
incidence (blue) and the specular reflection (red). 

Perforated Ceiling with Absorber  
In practice, the rear surface of the perforated plate is covered 
with a thin layer of acoustic fleece. As the fleece is glued to 
the perforated plate, the mass of the fleece is ignored, and 
the fleece is modelled as an impedance layer with Zs = Rs, 
where Rs denotes the specific flow resistance (see Table 1).  

Figure 4 compares the scattering coefficient of a perforated 
plate with (blue line) and without (red line) the fleece at a 
plane wave incidence of 45 degrees. With the fleece, the 
peaks of the scattering coefficient are much more 
pronounced and the peak frequencies are slightly shifted 
toward higher frequencies. The scattering peaks coincide 
with those of the absorption coefficients (grey line).  

Figure 5 shows the polar diagram of the scattered sound 
pressure on the receiver at 1.6 kHz, which is close to the 
frequency of the first sharp peak of the scattering coefficient 
in Fig. 4. The blue line (with the fleece) in general shows 
smaller lobes in all directions because of the absorption of 
the fleece layer, in particular in the specularly reflected 
direction at -45 degrees. If the height of the air cavity 
between the acoustic fleece and the rigid backing is a 
quarter of the wavelength, the particle velocity of the sound 
wave at the fleece is maximized, and thus the fleece 
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efficiently absorbs sound energy of the specular reflection. 
As the reflected sound field becomes more uniform, the 
scattering coefficient shows the peaks at frequencies similar 
to the absorption coefficient.  

The absorption coefficient is obtained by COMSOL using 
the infinite model (see sec. ‘Infinite Perforated Plate‘) of 
the periodic perforated plate covered with an acoustic 
fleece. The peak frequency is controlled by the air layer 
thickness. Therefore, the peak frequency slightly increases 
by adding the absorber on the rear surface, as this 
marginally reduces the air layer thickness, while keeping 
the construction at constant height.  

Figure 4: Scattering coefficients of the perforated plate 
without (red line) and with fleece (blue line), and the 
absorption coefficient of the suspended ceiling with the 
fleece (grey line).

Figure 5: Polar diagram of the reflected sound field from the 
perforated plate without (red line) and with (blue line) the 
fleece at 1.6 kHz. The arrows indicate the directions of the 
oblique incidence (blue) and of the specular reflection (red). 

Conclusions 
This paper focused on the numerical computation of the 
scattering coefficient of a perforated plate backed by an air 
cavity, which could represent a suspended ceiling 
construction. As the period of the perforation is much 
shorter than the wavelength of the incident sound wave in 
the considered frequency range, the periodicity of the 
surface can be simplified to a flat surface with homogeneous 
porosity. Finally, the infinite model with Floquet periodicity 
showed near zero scattering. 

The scattering coefficient of the finite perforated plate, 
modelled by a box with the perforated plate on the front 

side, is similar to that of the open box with a few extra peaks 
and dips. Considering this similarity and zero scattering of  

the infinite model, it can be concluded that the incident 
sound waves are mostly scattered by the boundary of the 
box, while the inhomogeneous surface of the perforated 
facing does not scatter the incident waves. The extra peaks 
of the scattering coefficient of the finite perforated plate 
correspond to the resonant frequencies of arrays of 
Helmholtz resonators, which are formed by the perforated 
plate and the air cavity behind it.  

If an acoustic fleece is attached to the rear surface of the 
perforated plate as an absorber, the peaks of the scattering 
coefficient are more pronounced, as the incident sound 
energy is dissipated more efficiently by the absorber. The 
peak frequencies of the scattering coefficient corresponded 
well with the peak frequencies of the absorption coefficient.  

A high absorption of the construction results in a small 
amount of the impinging sound energy being reflected at the 
surface. Therefore, even if the remaining little energy is well 
scattered, its effect on the diffuseness of the sound field in 
the room is limited. In order to improve the diffuse field of 
the room, high scattering coefficients at frequencies where 
absorption is low are mandatory to allow the reflected sound 
wave to propagate into the room. This is not the case with 
the considered construction. Introducing an additional 
periodicity of the perforation pattern with a larger period 
could be a solution, as the cut-on frequency of the diffracted 
wave will then be shifted to lower frequencies.   
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