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Introduction 
The Matrix Inversion Method (MIM) as a part of transfer path 
analysis (TPA) is a method for estimating source 
characteristics, both for airborne and structure-borne cases. A 
big advantage of the method is that the resulting characteristic 
of the source is independent of its surrounding. A source 
acting in a complex way is represented by several simpler 
sources (components) and their characteristics (force for the 
structure-borne or volume velocity for the airborne case). This 
model of the source can be used to virtually put the source 
into any other environment and to estimate its effect there. 
This advantage is worthwhile even if difficulties such as the 
problem of a correct model estimation have to be dealt with 
and that accurate measurements require a lot of efforts [1]. 
After completing the measurements, an engineer faces yet 
another problem, namely ill-conditioning of the matrix, that 
makes the problem very sensitive to any measurement error. 
The most popular way of treating an ill-conditioned matrix is 
its regularization. However, it must be kept in mind that 
regularization can lead to a loss of physically important 
information and must be used with care. This paper provides 
structured information on the problem of ill-conditioning in 
the matrix inversion method and proposes a way of deciding 
if the regularization is really needed. 

Motivation 

 

Figure 1: Simple example of measurements for the matrix 
inversion method. Source  consists of two components 

and ,  – transfer function between -th receiver and 
-th component,  – measured signals at receiver 

positions 
As mentioned before, the MIM is aimed to source 
characterization. The method is illustrated through a simple 
example. A sound source consists of two main components 
(Figure 1). To find characteristics of these components (
 – for “source”), two receiver positions are defined, a 

measurement under operational condition (  – for 
“measurement”) and a measurement of all transfer functions 

 is performed. The measured signals can be put into a 
system of equations (1) 

   (1) 

For a general case with a larger number of components and 
measurement points, this system can be written in a matrix 
notation as in equation (2). 

  or   (2) 

The solution for this system provides the desired source 
characteristic (3), where  indicates pseudo-inversion. 

 

(3) 

The solution can be very sensitive to even small perturbations 
in the measurements that make the system challenging to 
solve. The problem is named ill-posed (or ill-conditioned) in 
this case. A standard recommendation for processing of such 
a problem would be to calculate a matrix condition number 
and, if it is large, to use a regularization technique. However, 
there is no rule that could provide the information, which 
condition number is large, and which is acceptably small. 
Moreover, regularization may lead to a loss of physically 
important information. 

The goal was to clarify what regularization is really doing to 
the matrix, in order to decide if it is needed. 

Ill-posed problem 
An ill-conditioned or ill-posed problem is one that does not 
fulfil properties of a well-posed problem given by Jacques 
Hadamard [2], namely 

- a solution exists, 

- the solution is unique, 

- the solution's behaviour changes continuously with 
the initial conditions. 

It is quite difficult in real life to meet these points. 

First, the assumption is made that a considered process can be 
described by a continuum model (refer to the flowchart in 
Figure 2), where  is a continuum measurement, is a 
continuum system of transfer functions,  is a source and  is 
a possible distortion. At this point, it is assumed that the 
estimation of the model is correct, so it can be expected that a 
solution of this problem exists. 

A computational model to describe this process is discrete and 
is supposed to operate with the exact measurements  that 
can help to find the exact solution . However, a real 
measurement can contain an error 
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Figure 2: The transition from a continuum linear model to a 
real discrete model 

Under these circumstances, it can be expected that the 
solution cannot be unique. To cope with that, the problem is 
solved in terms of a least square approach. 

Least-square solution 
A least square solution  can be found as in 
equations (3). According to the Gauss-Markov theorem the 
least square solution is the best unbiased estimator of , 
in the sense that it has minimum variance. A visual 
representation of a direct problem as a starting point should 
show what this means using a transfer function matrix 

(4) 

with the exact solution . Then the exact measurement 
would be 

(5) 

In a real situation, of course, the exact solution is not known. 
Solving this problem means to find coordinates of  in a 
vector space defined by  (see Figure 3, left, equations (4) 
and (5)). 

  

Figure 3: Visual representation of a sample problem,  
Left – direct problem, Right – indirect problem 

To find the solution, the problem is formulated indirectly, 
which is described by the following equation 

(6) 

The elements of the matrix are named here  for “pseudo-
inversion”, and they do not have a physical meaning. A visual 
representation of the indirect problem is shown in Figure 3 
(right). The vectors  and  point to almost opposite 
directions. 

Having exact measurement, the exact solution can be found. 
It is worth mentioning that the exact measurement leads to the 
exact solution, and it does not matter if the problem is ill- or 
well-conditioned. However, if the measurement does contain 
some error, the least square solution of an ill-posed problem 
can differ dramatically. The exact solution is marked in Figure 
4 by a diamond. The stars correspond to the solution of the 
system with an introduced error regarding  within ±5%. As 
can be seen, the resulting error is much larger than the 

measurement error. It breaks the third property of the well-
posed problem. The unbiased estimator of the exact solution 
given by solving a least square problem has a minimum 
variance, even though the variance can still be large. To 
overcome this problem the regularization was introduced. 

 

Figure 4: Visual representation of an indirect sample 
problem. Vectors – columns of the inverted matrix:  and 

. Diamond - exact solution, stars – least square solution, 
assuming a measurement error of ±5%, triangles – 
regularized solution, assuming the same measurement 
error (for better visibility see the zoomed area) 

Regularization and matrix condition number 
Regularization aims to stabilize the problem regarding the 
error, but the penalty, that must be paid is the agreement on a 
biased solution. It means that a regularized solution will never 
be exact, even if the measurements are correct. Regularized 
solutions to the problem discussed above are shown in    
Figure 4 by triangles. The variance of the solutions is not so 
large anymore, but none of the solutions match the exact one, 
even for the case of no error. 

It is important to bear in mind that in more complex cases the 
regularized solution can be misleading, even being stable with 
regard to the measurement error. 

Therefore, some instrument is needed that can provide 
information on how sensitive the solution is to an error. A 
well-known indicator is a condition number of a matrix. 

The matrix condition number is a ratio of the largest and the 
smallest non-zero singular value of the matrix. Theorems of 
singular value decomposition (SVD), principal component 
decomposition (PCD) and their relationship can help to 
understand why the condition number is important, but at the 
same time why it is not so useful. 

The theorem of singular value decomposition states that any 
matrix can be represented as in (7). SVD is a powerful tool 
and there is a lot of useful information behind it, but here only 
its relationship with PCD is considered: 

where

and

(7) 

According to PCD a matrix can be represented as a sum of its 
principal components. The components can be found as in 
equation 8 [3].

Continuum 
linear model

Computational
model

Real model
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(8) 

The principal components are decreasing in terms of their 
variance. The singular values are the weights of each principal 
component . In the direct problem, the larger 
singular values correspond to more significant principal 
components. However, in the inversion the least significant 
principal components get the largest weight as can be seen 
from equation 9.  

   (9) 

Thus, any small error multiplied by the last principal 
components will be emphasized by an inverted small singular 
value. It is hard to predict whether they dominate on the more 
significant components or not. In theory, the condition 
number as described in equation 10 is used to estimate it:

(10) 

It is worth mentioning that there are no tips in literature 
regarding what can be considered a critically large condition 
number for each specific matrix. Each problem must be 
considered individually. 

However, if somehow a conclusion can be made that the 
measurements contain too many uncertainties, regularization 
is useful to make the result more stable. The purpose of 
regularization is to dampen or to filter out the small singular 
values. Thus, it reduces the condition number. A critical 
example of regularization is truncated SVD (TSVD): 
components that correspond to the small singular values are 
simply discarded. It is clear that this can change the matrix 
strongly, which means it changes the model of the problem.  

A gentler and probably more popular regularization technique 
is Tikhonov regularization, which was used in the illustrated 
example as well. The topic of application of regularization 
and choice of the regularization parameter is very 
comprehensive, and for more details on its application, the 
reader can refer to the specific literature [4, 5]. 

In practice, there are other techniques useable as well for 
decreasing the matrix condition number, for instance, usage 
of overdetermination points or reduction of the matrix by 
discarding some transfer functions. It is important to keep in 
mind that decreasing the condition number does not 
necessarily yield an improvement of the results. The rule is 
rather “the larger – the possibly worse” and not “the smaller 
– the better”. Moreover, this is another point about why the 
regularization must be used with care. 

Estimation of ill-posed problems 
To estimate how far the matrix is from being well-posed, the 
dependency of the resulting error regarding the measurement 
error is observed again but in a more general way. The 
condition number of a given matrix is changed by adjusting 
its singular values and observing the reaction of the new 
matrix to the measurement error. The simplified algorithm is 
shown in Figure 5. 

 

Figure 5: Observation of the dependency of resulting error 
over measurement error 

In an ideal case, when the matrix condition number equals 1 
(all the principal components have equal weights, e.g., all 
singular values are equal), the resulting error is supposed to 
be proportional to the measurement error: the larger the non-
proportionality, the more ill-posed the problem. An example 
of such an observation for the sample problem is shown in 
Figure 6. The direction of the measurement error was 
randomly chosen for each inner loop of the algorithm (see 
Figure 5). As can be seen from Figure 6 (left), the ideal line 
(cond=1) is straight and the resulting error  matches the 
measurement error. Slope and fluctuations increase with 
increasing condition number. Some directions of the 
measurement error show much larger influence on the 
resulting error. 

Figure 6 (right) shows the resulting error  for a fixed 
direction of the measurement error , leading to lines for any 
condition number, as expected. The influence of the direction 
of the measurement error  can be illustrated well as a two-
dimensional graph in Figure 7. The resulting error is low for 
the 45° direction because of opposite directions of the vectors 

 and  (see Figure 3, right). 

 

Figure 7: Resulting error  as a function of the direction 
of measurement error, i.e., its two components  and  

Figure 6: Resulting error  for different condition 
numbers, Left: Direction of measurement error  
randomly chosen for each point, Right: Fixed direction of 
measurement error  for each point 
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By randomly changing the components of the measurement 
error, a statistical analysis of the resulting error can be given, 
as shown in Figure 8. 

 

Figure 8: Box plot of the ratio of the resulting error to the 
measurement error for different condition numbers. The 
direction of the measurement error was changed randomly. 

As can be seen, the measurement error grows proportionally 
to the condition number, in terms of mean value as well as in 
terms of the deviation. So making such an analysis of the 
original matrix, it can be estimated how ill-posed the problem 
is and how strongly it needs to be “improved” to meet any 
constraints of each specific problem. 

Real application example 
The usage of MIM was studied for the characterization of a 
distributed sound source in [6]. It was shown, how a model 
can be changed regarding the matrix condition number. For 
more details, please refer to [6]. At that moment, an optimum 
condition number was intuitively defined. Now, it can be 
shown how effective the improvement of the problem is due 
to the reduction of the condition number. Additionally, a 
threshold parameter of an ill-conditioned problem can be 
estimated. 

In [6] two models for estimating the volume velocity of a 
vibrating plate at a frequency of 260 Hz were presented. One 
corresponds to a 20x20 transfer function matrix (case 1) and 
another to a 59x59 matrix (case 2). For such a low frequency, 
case 1 shows much better results. An error analysis similar to 
the one shown in Figure 8 is given in Figure 9. 

  

Figure 9: Observation of the dependency of the resulting 
error with respect to the measurement error for case 1 (left) 
and case 2 (right) 

Besides the fact of a strong error amplification for case 2 by a 
factor of around 200 (median) compared to a factor of about 
12 for case 1, the error distribution for case 2 is asymmetric 
and shows much more outliers at higher error values, whereas 
the distribution for case 1 is almost symmetric. 

Conclusion 
Ill-conditioning often becomes a problem of the matrix 
inversion method. First, it is difficult to determine if the 
system (the matrix) is ill-posed. The common indicator of an 
ill-conditioned matrix is a large condition number. 

Mathematically, a large condition number can be caused by 
different reasons; some of them are a large size of the matrix, 
a wrong rank estimation, a large difference between the 
maximum and minimum value, a high correlation, etc. These 
features are observed in many practical applications, although 
they are difficult – or perhaps impossible – to prove in 
general. 

However, there is no “threshold” value and each case has to 
be considered individually. For a “user” of the MIM it is 
important to know what kind of resulting error can be 
expected, knowing an approximate range of possible 
measurement errors. It can only be tested by trial, as was 
shown in Figure 4. 

The common way of treating ill-conditioned matrices is 
regularization. However, it is important to know that the 
regularized solution is a biased estimator and can never be 
exact even for the case of no error. Regularization based on 
damping singular values of a matrix changes the model. Often 
a controllable change of the model by reconsidering it may 
provide results that are more reliable. There can be too many 
or too few measurement points, etc. 

If regularization is needed, it is worth testing how strongly the 
matrix must be “improved”. This can be achieved by 
observing the sensitivity of the MIM result to a measurement 
error. The results of such a sensitivity analysis should be 
compared for the cases of the original and the regularized 
matrix in order to see the effect of regularization, and if 
regularization is really needed. 
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