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Introduction 
One advantage of a Spherical Microphone Array (SMA) is 
the possibility to analyze all directions in space with similar 
efficiency, but it usually requires a high number of 
microphones, each one associated with a measurement point, 
to be able to have a good spatial resolution. This requirement 
usually means an increase in the array cost.   

This paper shows the development of a rotating circular 
array with 14 microphones, resulting in a virtual SMA with 
98 measurement points. Aiming the identification of 
direction and time of arrival of plane waves in a reverberant 
field, this array geometry allows a spherical harmonic 
expansion up to 6th order.  

It is presented the comparison between simulations and 
measurements with the proposed array, using the Spherical 
Harmonic Beamforming.  

Spherical Harmonic Beamforming 
The spherical harmonics are an orthonormal base of 
functions that are obtained by solving the wave equation for 
spherical coordinates. The degree n and order m spherical 
harmonic is given by:  

 
 (1) 

where θ and φ are the elevation and azimuth angles, 
respectively, and  is the associated Legendre polynomial. 
Considering a function f(θ,φ) which is entirely defined and 
integrable on the surface, Ω, of a unit sphere, it is possible to 
decompose it in spherical harmonics in the following way: 
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The overline f is the degree n and order m coefficient, it can 
be obtained by: 

dYff m
nnm *),(),(   (3) 

where * is the conjugated complex representation. 

The advantage of the spherical arrays is the possibility of 
having the same beampattern for all the directions in space. 
The ideal beampattern is a Dirac delta in this application, 
where the direction of interest has unitary gain and all the 
others have none. The generic spherical harmonic 

beamforming expression for a driven direction (θs,φs) is 
given by: 
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where w is the steering vector that drive the algorithm for the 
direction (θs,φs), k is the wave number, a is the sphere radius 
and P is the Fourier Transform of the pressure over the 
sphere surface. 

Using the spherical harmonic decomposition, the ideal 
beampattern can be expressed by the spherical harmonics: 
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Therefore, the ponderation, assuming that the sound field is 
composed only by plane waves, is given by [1] 

 
 (7) 

where bn is the mode strength and it is given by: 
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for open spheres (where the spherical surface is virtual) and 
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for rigid spheres. Where jn and hn is the Bessel spherical 
function and Henkel spherical function, respectively, j’n and 
h’n are their derivatives. The second term in the right side in 
Eq. [9] is due the scattering around the rigid surface. 

The mode strength can be seen in Figure 1, for the rigid and 
open sphere cases. It can be noticed that some amplitudes 
become null or very small for specific ka values for the open 
sphere. The advantage of the rigid sphere, over the open one, 
is its numerical stability, due to the inversion of bn, as seen 
in Equation (7). For the open sphere, the mode strength 
approaching zero for certain frequencies might lead to 
numerical instability and uncertainties. The advantage of the 
last one would be the ease in the fabrication when compared 
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with the rigid one with the same measuring points 
distribution.  

 
Figure 1: Mode strength, bn(ka), for rigid (top) and open 
(bottom) spheres, for order n = 0 to 5. 

In practice, the pressure is not known along the entire sphere 
surface, only in discrete points where the microphones are 
positioned. For this reason, the beamforming integration 
becomes a summation: 

 
 (10) 

where  is the term responsible to compensate the 
distribution of the sample points and make the summation 
converge. 

Consequently, it will not be possible to expand the ideal 
beampattern to infinity orders. Generally, to ensure a 
truncation of the harmonic spherical decomposition in order 
N, it is necessary M microphones [2], where: 

    (11) 

For greater N, the beampattern will be closer from the Dirac 
delta. The Figure 2 shows beampattern truncated for 
different N values. 

 

Figure 2: Beampattern truncated in order N = 1, 5, 10, 20 
and 50 

Therefore, the spatial resolution  will become tighter the 

greater N, that means, the greater is the number or measuring 
points: 

    (12) 
 

Microphone Array 
As shown in the previous section, to achieve better spatial 
resolution it is necessary to increase the number of 
measuring points. But the measuring points usually is 
limited by the number of sensor and input channels in the 
acquisition boards available. That means, to improve the 
spatial resolution, in general cases, it leads to an increase in 
the cost of the array. 

For these reasons, it is proposed a rotating microphone array 
(Figure 3) consisting in 14 microphones distributed in a 
circle with radius 100 mm, according with the Gaussian 
sampling [1]. Sampling the sound field in 7 different angles, 
around the central metal shaft, it is formed a virtual spherical 
array, an open sphere with 98 measuring points. The rotation 
is made by a control system using a potentiometer and a step 
motor.  

This number allows the expansion in spherical harmonics up 
to order N = 6.  The frequency range expect for this array is 
between the 1250 and 2500 third octave [3]. 

 
Figure 3: Rotating microphone array 

Figure 4 shows the three main error sources for the spherical 
harmonic beamforming for the open sphere [4]. The error in 
positioning the microphones and the error due to the 
transducer noise have the same behavior. Both have 
significantly greater error for lower frequencies and slightly 
increasing error for higher frequencies, having a minimum 
value at ka = N, adding some peaks due to the division by 
bn., that tends to zero for some arguments, as seen in 
Figure 1.  

For the spherical harmonics aliasing, the error is small for 
lower frequencies and increases for higher frequencies. 
These errors will determinate the real frequency range of the 
array. 
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Figure 4: Errors in the spherical harmonic beamforming 

over the frequency 

Simulations 
Using the geometry of this 98-points spherical microphone 
array, two situations were simulated: 

 Stationary sound source emitting a white noise 
arriving at the spherical array in the direction 

. A time window of 0.1 s 
was used. 

 Sound source emitting broadband impulse arriving 
at , with the experimental 
procedure shown in Figure 5. In this case, the maps 
were made for the exactly instant of arrival of the 
impulse. 

 
Figure 5: Procedure adopted for the creation of the impulse 

response maps [5] 

Figure 6 and 7 show the results for each case, respectively. 

Figure 6: Sound maps of the simulation for stationary sound 
source emitting a white noise 

 
Figure 7: Sound maps of the simulation for the instant of 

arrival of the broadband impulse 

For the boths cases, it can be seen that the simulations 
confirms the expect frequency range. Above 2500 Hz, it is 
observed some distortions in the main lobe that can be 
explained by the truncation in the spherical harmonic 
decomposition in order N = 6. 

Measurements 
The same two previous situations were measured using a 
mini chamber with approximately 0.4 m³ and with all 
surfaces covered with an acoustic foam. For this 
configuration, the mini chamber has a reverberation time 
(T20) of 0.015 s. Figure 9 and 10 show the results for each 
case, respectively. In these measurements, the direction 

 of the sound source was shifted to appear in the 
center of the map. 

 
Figure 8: Mini chamber, covered with acoustic foam, used 

in the measurements 

 
Figure 9: Sound maps of the measurement for stationary 

sound source emitting a white noise 
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Figure 10: Sound maps of the measurment for the instant of 

arrival of the broadband impulse 

It can be seen that, in both cases, the results differ from the 
simulation, especially for higher N and lower frequency. 
This can be explained by the error in the sensor positioning, 
as shown in Fig. 4a. In Fig. 9, it also can be seen some 
concentration of energy that does not correspond to the 
direction of the direct sound. This is because of the acoustic 
foams that do not absorb all the sound energy, for this 
reason, it will still be there first order reflections in the sound 
maps. 

Conclusion 
It was designed and built a rotating microphone array with 
98 virtual measuring points distributed in a spherical surface 
of radius 100 mm. The main objective was to calculate the 
directional impulse response for late reverberation 
reflections identification, using a low-cost spherical array 
that allowed a properly spatial resolution for this application. 

The simulations showed that the desired spatial resolution 
can be achieved with the geometry proposed for the 
frequency range between the third octaves of 1250 and 2500 
Hz, using spherical harmonics up to order N = 6. On the 
other hand, the measurement did not show this efficiency, 
presenting higher errors, especially, for lower frequency and 
for higher N. Before this array is used in room acoustics 
applications, as the one proposed in this paper, the error 
sources must be found and corrected. 

One of the hypotheses that would explain this difference is 
the positioning error of the sensors. Since it is been analyzed 
a rotating array, this accuracy is harder to ensure, because 
the precision of the control system will never be perfect. 

Another point that must be revised is the used of the mini 
chamber for the measurement, since it does not provide an 
anechoic environment, that means, unexpected reflections 
will appear in sound maps, mainly in the 1st situation with 
the sound source emitting a white noise. 

Lastly, the open-sphere model should be also be revised. In 
this model, it is considered that the microphone array does 
not interfere in the sound field, but this assumption shall not 
be taken for higher frequency range. 
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