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Introduction
An essential requirement of aeronautic structures is their
lightweight design. Such characteristic yields a consid-
erable susceptibility to vibrations which contribute to
an increased cabin-interior noise. In order to reduce
structure-borne noise, viscoelastic materials can be in-
tegrated as damping layers in the fuselage structure. A
special property of viscoelastic materials is the frequency
dependence of their material parameters. At different ex-
citation frequencies, both the stiffness and the damping
capability of the material can vary significantly. There-
fore, to evaluate the influence of local viscoelastic ele-
ments on a global structure regarding modal parame-
ters such as eigenfrequencies and damping ratios, it is
necessary to solve an eigenvalue problem with frequency
dependent stiffness and damping matrices. However, a
solver for such an eigenvalue problem is not available in
current finite element software.

At first, an overview of the theoretical background is
given. The principle of an iterative eigenvalue solver is in-
troduced and demonstrated on a simple spring-mass sys-
tem. In addition, an approach is provided to use the iter-
ative eigenvalue solver in conjunction with MSC Nastran.
Using a finite element model, the modal parameters of
the iterative eigenvalue solver are finally compared with
parameters identified from a frequency response analysis.

Theoretical background
In case of forced harmonic excitation, any material ex-
hibiting both elastic and viscous properties can be de-
scribed by a complex Young’s modulus E∗ in the form

E∗ = E′ + iE′′ = E′(1 + iη) (1)

where i is the imaginary unit, E′ the storage modu-
lus, E′′ the loss modulus and η the material loss fac-
tor [1]. Under the assumption of isotropic behavior, the
one-dimensional material law can be incorporated into a
spatial model by means of a complex elasticity matrix E∗

E∗ = E∗A = E′A + iE′′A = E′ + iE′′ . (2)

In this case, A corresponds to the classical elasticity ma-
trix of isotropic solid material with the complex Young’s
modulus E∗ factored out [2]. From eq. 2 it is evident
that the real and imaginary part of the elasticity matrix
are proportionally dependent on the corresponding part
of the complex Young’s modulus. Using the components
of the complex elasticity matrix, the element stiffness KE

and element hysteretic damping matrices DE can be as-
sembled by solving the integral function over an element

volume VE

KE =

∫
VE

(
ΘϕT

)T
E′ΘϕT dVE , (3)

iDE = i

∫
VE

(
ΘϕT

)T
E′′ΘϕT dVE . (4)

In those equations, ϕ indicates the shape function matrix
and Θ the differential operator matrix. The element ma-
trices are sorted into the corresponding global stiffness
K and hysteretic damping matrix D, by multiplication
with Boolean matrices BE [2]

K =
∑
E

BT
E KE BE ; iD = i

∑
E

BT
E DE BE . (5)

In general, a freely vibrating multiple degree-of-freedom
(MDOF) system with hysteretic damping can be de-
scribed by a complex equation of motion which consists
of a mass matrix M, a stiffness matrix K and a hysteretic
damping matrix D [3]

Mẍ + [K + iD] x = 0 . (6)

The displacement is indicated by the vector x. Assuming
a solution of the form

x = x̂eiλt (7)

with t as the time, the rth eigenvalue λr contains the
natural frequency ωr in the real part and the modal loss
factor ηr as the ratio of imaginary and real part [3]

λ2r = ω2
r(1 + iηr) . (8)

For such systems the eigenvalue can be calculated di-
rectly from the constant system matrices. However, if a
viscoelastic material is applied to the system, the stiffness
matrix as well as the hysteretic damping matrix is not
constant anymore. Instead, both matrices are dependent
on the vibration frequency ω: K = K(ω),D = D(ω).
This yields the following equation of motion

Mẍ + [K(ω) + iD(ω)] x = 0 . (9)

As a consequence, the eigenvalues cannot be calculated
directly anymore, since they also depend on the fre-
quency. However, the corresponding eigenvalue problem
can be defined using eq. 7 and 8

det
[
−ω2

r(1 + iηr)M + K(ω) + iD(ω)
]

= 0 . (10)
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It is assumed that the vibration frequency on which the
stiffness and damping matrix depend has to be a natural
frequency of the system

δ = ω − ωr = 0 , (11)

where δ is the absolute error. It serves as a control pa-
rameter to check for convergence of the trial frequency ω
towards the eigenfrequencies ωr within the iterative loops
of an iterative eigenvalue solver (IES) to be explained in
the next section.

Structure of the iterative eigenvalue solver
Different approaches for determining modal parameters
of structures containing viscoelastic material have been
discussed in [4]. In contrast to the proposed algorithms,
the IES presented in this paper includes an optimiza-
tion which is based on eq 11. In order to find an eigen-
value, the difference between the

”
input“ and

”
output“

frequency has to be zero. It can be understood as an op-
timization in which the objective is to find the smallest
error. At this point it should be mentioned that the IES

starting frequencies
ω1, ω2 ω1 6= ω2

system matrices
Kk(ωk),Dk(ωk)

eigensolution

λr,k, ωr,k =
√
<(λ2r,k)

for k = 1, 2

error calculation
δr,k = ωk − ωr,k

end

frequency optimization

ωn =
ω1 · δr,2 − ω2 · δr,1

δr,2 − δr,1

matrices for ωn
Kn(ωn),Dn(ωn)

eigensolution

λr,n, ωr,n =
√
<(λ2r,n)

error calculation
δr,n = ωn − ωr,n

stop criterion
|δr,n| < ε

eigenvalue

parameters
ω1 = ω2
ω2 = ωn

No

Yes

set

(I)

(IIa)

(IIb)

(IIc)

(III)

(IV)

(V)

(VI)

(VII)

δr,1 = δr,2
δr,2 = δr,n

λr,it = λr,n

Figure 1: Algorithm of the iterative eigenvalue solver

cannot find all eigenvalues of a system at once, but one
by one. To illustrate the function of the IES, the basic
algorithm is described in Figure 1.

At first, two different frequencies ω1 and ω2 have to be
chosen as an input (I) and are referred to a loop. Inside
the loop, the stiffness and damping matrices are gener-
ated (IIa) and the corresponding eigenvalue problem is
solved for each of the chosen frequencies (IIb). The nat-
ural frequency ωr is calculated from the resulting eigen-
value λr. After this, the absolute deviation δk between
the

”
input“ frequency ωk and the calculated natural fre-

quency ωr is determined. The secant method is used
to compute a new improved frequency ωn (III) which is
closer to the sought natural frequency [5]. By using the
improved frequency ωn, the corresponding system ma-
trices are generated (IV) and the eigenvalue problem is
solved again (V). After performing the error calculation
(VI), the algorithm checks, whether the calculated error
δr,n is lower than a predefined threshold value ε. If not,
the parameters have to be set according to (VII) and the
algorithm restarts with the optimization step (III). If the
stop criterion is fulfilled, the eigenvalue is finally found.

Example for a SDOF system
The capability of the IES is demonstrated by means of
a single degree-of-freedom (SDOF) system. The system
is shown in Figure 2 and consists of a constant mass m
and a complex frequency dependent spring k∗

k∗(ω) = k(ω) (1 + iη(ω)) . (12)

Both the stiffness k and the material loss factor η shall
be linearly dependent on the frequency

k(ω) = k1 + k2ω , (13)

η(ω) = η1 + η2ω . (14)

In eq. 13 and 14, k1 and k2 are stiffness parameters and
η1 and η2 are damping parameters. Although the system
contains a frequency dependence, the eigenvalue problem
can be solved analytically. By using the approaches of

k∗(ω)

m

x

Figure 2: SDOF system with complex stiffness

eq. 7 and eq. 8, the eigenvalue problem is defined as

−ω2
r(1 + iηr)m+ k(ω) (1 + iη(ω)) = 0 . (15)

Applying eq. 13 and eq. 14 into eq. 15 yields

−ω2
r(1 + iηr)m+ k1 + k2ω (16)

+ i
[
k1η1 + k1η2ω + k2η1ω + k2η2ω

2
]

= 0 .

In order to solve eq. 16, both the real and the imaginary
part of the equation needs to become zero. As a con-
sequence, eq. 16 can be divided up into two equations.

DAGA 2020 Hannover

901



The real part results in

−ω2
rm+ k1 + k2ω = 0 , (17)

while the imaginary part is

−ω2
rηrm+ k1η1 + (k1η2 + k2η1)ω + k2η2ω

2 = 0 . (18)

From eq. 17, the natural frequency can be determined,
if ω = ωr

ωr =
k2 ±

√
k22 + 4k1m

2m
. (19)

Eq. 19 has two solutions for the natural frequency. Since
all parameters can be assumed to be positive rationale
numbers, eq. 19 always results in a positive and neg-
ative frequency. If the negative frequency is neglected,
eq. 19 can be inserted into eq. 18 and solved for the
corresponding modal loss factor

ηr =
k1η1 + (k1η2 + k2η1)ωr + k2η2ω

2
r

mω2
r

. (20)

In the following, the system is evaluated for discrete vir-
tual values, where the mass is m = 1 kg, k1 = 1000Pa,
k2 = 10Pa s, η1 = 0, 02 and η2 = 0, 0005 s. As start-
ing frequencies ω1 = 40π s−1 and ω2 = 80π s−1 are cho-
sen for the IES algorithm. The threshold value is set to
ε = 10−5. The results are illustrated in Tab. 1.

Table 1: Results of the SDOF system

Iteration |δr,n| [s−1] ωr [s−1] ηr [−]
step n

1 0,3323 37,3400 0,0391
2 0,0115 37,0269 0,0385
3 7, 81 · 10−6 37,0156 0,0385

analytical - 37,0156 0,0385

It is evident that the iterated solution is already very
close to the converged one after one iteration step, al-
though the initial frequencies differ significantly from the
resulting frequency. Since the stop criterion is reached,
the algorithms stops after three iterations. The natural
frequencies and the modal loss factors of the IES and the
analytical solution coincide exactly up to the fourth digit
after the decimal point.

Application with FEM software
The following interaction can be carried out with all fi-
nite element method (FEM) software which allow for the
extraction of the system matrices. The principle is based
on the fundamental equations of FEM, introduced in the
first section. The Boolean operation from eq. 5 avoids
retracing the contribution of each element matrix to the
global system matrices. However, the factorized impact
of a frequency dependent material (subscript f ) can be
retrieved in the system matrices. This requires a manip-
ulation of the corresponding material properties. Instead
of using the real material values for the storage and loss
modulus, both properties have to be set to a template

value E′f,temp = E′′f,temp = 1. At the same time, the
damping contribution of other materials j of the studied
system has to be neglected (E′′j = 0). This procedure
ensures that the entries of the generated

”
template“ hys-

teretic damping matrix Dtemp are factorized and can be
referred to the frequency dependent material. Addition-
ally, the contributions of the frequency dependent ma-
terial are also known for the

”
template“ stiffness matrix

Ktemp. By taking advantage of the proportional depen-
dence of the complex Young’s modulus, the real stiffness
and hysteretic damping matrices can be determined at
every frequency

D(ω) = E′′f (ω) Dtemp , (21)

K(ω) = Ktemp +
(
E′f (ω)− 1

)
Dtemp . (22)

This means that the calculation of a FEM software has
to be performed only once in order to get access to the
system matrices. At the same time it does not matter by
which type of elements the system was built. Afterwards,
the system matrices can be manipulated in the proposed
manner.

Numerical example using MSC Nastran
For demonstration purposes, a sandwich structure illus-
trated in Fig. 3 is considered. The cantilever beam has
a length of 1000mm and consists of a viscoelastic core
layer (B) that is constrained between two aluminum lay-
ers (A and C). The corresponding material and geomet-
rical properties are listed in Tab. 2, the properties for
the viscoelastic material are presented in Fig. 4.

z
y

A

B

C

F

x

Figure 3: Schematic setup of the sandwich cantilever

Table 2: Material properties of the sandwich layers

layer ρ [kg/m3] E [Pa] ν [−] h [mm]

A 2700 7, 1 · 1010 0,33 10
B 1250 - 0,499 5
C 2700 7, 1 · 1010 0,33 5

In Tab. 2, ν is the Poisson’s ratio, h the height of the
layer and ρ the density. MSC Nastran 2018.2 CQUAD4
shell elements are chosen for the discretization. The
membrane properties of the elements are used for rep-
resenting the plain stress in the y-z plane. In the first in-
stance, the material values for the storage and loss mod-
ulus are set as described in the previous section and the
system matrices are extracted to Matlab R2018b. The re-
sulting distributions of the matrix entries are presented in
Fig. 5. While the stiffness matrix exhibits entries on the
main diagonal and two off-diagonal bands, the hysteretic
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Figure 4: Storage modulus and material loss factor of the
viscoelastic material

damping matrix is rather sparse. Only the viscoelastic
material contributes to the content of the matrix. At
the same time, the entries in the damping matrix indi-
cate the areas of the stiffness matrix, where contributions
from the aluminum have to be superimposed by the con-
tribution of the viscoelastic material. The matrices with
the real material properties from Fig. 4 can be obtained
for a desired frequency by using eq. 21 and 22. In the
first step, the IES is applied to the resulting system ma-
trices in order to determine the modal parameters of the
first four bending around the x-axis.

(a) (b)

Figure 5: (a) Sparsity pattern of stiffness and (b) hysteretic
damping matrix built up with CQUAD4 elements

In a second step, a frequency response analysis is per-
formed. For this, the beam is subjected to a harmonic
force F in y-direction (force amplitude = 1N), as visu-
alized in Fig. 3. In order to validate the IES, the modal
parameters are identified from the simulated frequency
response functions by means of experimental modal anal-
ysis. The Least-Squares Complex Frequency domain
method (LSCF) is used for this purpose [6]. Tab. 3
shows the deviation ∆ of the identified eigenfrequencies f
and damping ratios with those obtained from the IES. It
should be noted that the following relation exists among
the damping ratio and the loss factor: 2Dr = ηr.

Considering the values of the eigenfrequencies, the IES
results are almost exactly in accordance with the results
of the LSCF method. Larger deviations can be observed
however for the damping ratios. Furthermore it stands
out that all values which are identified with the LSCF
method are larger than the corresponding values of the
IES. A reason for the deviation might be found in the
linear system approach of the LSCF method that cannot
represent frequency dependence properly.

Table 3: Comparison of IES and LSCF results

Mode
fIES fLSCF ∆f DIES DLSCF ∆D

[Hz] [Hz] [%] [−] [−] [%]

1 11,27 11,29 0,18 0,0507 0,0520 2,50
2 52,25 52,38 0,25 0,0641 0,0664 3,49
3 131,98 132,26 0,21 0,0581 0,0599 3,08
4 247,04 247,32 0,11 0,0450 0,0460 2,20

Conclusion
In this paper an alternative approach for an IES algo-
rithm for frequency dependent systems was introduced.
The results of the IES were compared to an analytically
solved SDOF system and showed excellent accuracy re-
garding the modal parameters. Based on FEM theory
it was presented, how system matrices from FEM soft-
ware can be easily manipulated outside the software en-
vironment subsequently. Additionally, a sandwich can-
tilever beam with frequency dependent viscoelastic ma-
terial properties was discretized by shell elements in MSC
Nastran. The resulting system matrices were extracted
and the system has been analyzed regarding its modal
parameters by means of the IES. Furthermore, a fre-
quency response analysis has been performed and the cor-
responding modal parameters have been identified using
the LSCF method. The results of both methods showed
good agreement, even if a small deviation exists for the
damping ratios. Therefore, it has been proven that the
IES is a viable tool for analyzing systems with frequency
dependent material properties.
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