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INTRODUCTION
Computer-aided design and simulation-based virtual pro-
totyping play an increasingly important role in the de-
sign and optimization of new musical instrument mod-
els. These methods help to create precisely tuned, high-
quality products and also facilitate the preparation of
series production. In the case of the xylophone, two el-
ements have a decisive role in the sound emission of the
instrument: the sound bar and the resonator, which in-
teract with each other and with the excitation produced
by the mallet. For modeling realistic geometries (irregu-
lar tuning cuts, or resonators of various shapes), numer-
ical tools, such as the �nite element method (FEM), are
necessarily applied.

In this contribution the vibroacoustic behavior of the
sound bars and resonators of a xylophone are investi-
gated, �rst independently, and then in a coupled model
considering the two-way interactions of these elements.
The implementation is validated by means of various
tests and also by comparison with measured data. The
established fully coupled model can be utilized for vir-
tual prototyping, and for synthesizing xylophone sounds,
in addition. Finally, the in�uence of changing certain
parameters of the system on the perceived sound is illus-
trated, highlighting the importance of two-way coupling
between sound bars and resonators.

COMPUTATIONAL MODEL
Model of the sound bar
The sound bar model utilizes the mechanical FEM. The
three-dimensional structured mesh is created starting
with a brick which is then transformed geometrically to
attain the actual undercut of the middle part, as can be
seen in Figure 1. A linear elastic model with viscoelas-
tic losses is used with an orthotropic representation of
the material properties of the wooden bars. The �nite
element discretization results in an algebraic system of
equations relating the excitation force f and the displace-
ment response u as

(Km + jωCm − ω2Mm)u = Fmf , (1)

where Km, Cm, Mm, and Fm are the mechanical sti�-
ness, damping, mass and excitation matrices and ω is the
circular frequency.

To solve (1), modal superposition is exploited. The mode
shapes and eigenfrequencies were calculated �rst, by solv-
ing (1) without any excitation and damping. The �rst
vertical, horizontal and torsional bending mode of the F4
sound bar are also shown in Figure 1. Then, the displace-
ment of the bar can be computed as a linear combination
of the mode shapes as a response to any excitation. This
modal solution approach is more e�cient than solving
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Figure 1: The model of the F4 sound bar (top) and the
�rst mode shapes: vertical (bottom left), torsional (bottom
middle) and horizontal (bottom right)

(1) directly. It should be mentioned that this method in
itself can only be applied if the excitation force is inde-
pendent of the displacement of the sound bar, which is
not true for the case of the mallet�sound bar interaction.

Model of the resonator
Similar to the sound bar, the resonator is modelled by
a 3D geometry, using the acoustical FEM based on the
Helmholtz equation. The excitation of the acoustical sys-
tem is the normal particle velocity v on the surfaces and
the response is the sound pressure p in the whole domain:

(Ka + jωCa − ω2Ma)p = −jωFav. (2)

The challenge in the acoustical model is the treatment
of the in�nite domain, as the xylophone is assumed to
radiate into free space. Figure 2 displays a truncated
�nite acoustical domain of a resonator. The acoustical
mesh is subdivided into tetrahedra elements. To emu-
late free �eld radiation conditions in�nite elements are
utilized that are attached on the outer surface of the top
cuboid visible in Figure 2. The in�nite elements repre-
sent the decaying and oscillating propagation of sound
waves towards in�nity, such that incident waves are per-
fectly absorbed by them without any re�ection. Our im-
plementation follows the formulation given in [1]. It is
also noted that the damping matrix Ca arises due to the
in�nite elements.

Vibroacoustic coupling
The mechanical and acoustical �nite element models are
coupled by taking two-way interactions into account.
The sound pressure exerts force over the surfaces of the
sound bar, and at the same time, the vibration of the
bar results in a normal particle velocity excitation on
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Figure 2: The model of a cavity resonator (bottom cuboid)
with the simulated outer domain (top cuboid) in front view
(left) and side view (right). The two domains are connected
by a short neck. As the resonator has a symmetry plane, only
a half model is meshed.

the interaction surface of the acoustical and mechanical
models. The coupled equations read as

(Km + jωCm − ω2Mm)u = Fm(f +Amp) (3)

(Ka + jωCa − ω2Ma)p = −jωFa(Aajωu) (4)

The matrices A project the displacement and the sound
pressure between the �nite elements of the two models
by means of conservative interpolation. From (3)�(4) a
block matrix equation can be written by rearranging the
unknown u and p to the left hand side:

Kc

[
u
p

]
+ jωCc

[
u
p

]
− ω2Mc

[
u
p

]
=

[
Fmf
0

]
. (5)

The subscript c refers to the coupled model and the block
matrices can be expressed from the acoustical and me-
chanical system matrices. The solution of the coupled
problem is attained by solving (5). The number of un-
knowns can be reduced by expressing both systems in a
truncated modal basis. In the sequel the computation
of the excitation force by the mallet, appearing in the
vector f , is discussed.

Collision model
The interaction of the mallet and the sound bar can be
modeled as an elastic collision of two spheres [2]. The
Hertz law expresses the connection between the force F
acting on the mallet head and its compression δM

δM =

[
F 2D2

(
1

rB
+

1

rM

)] 1
3

, (6)

where rB and rM are the radius of the two �spheres�: that
of the bar and of the mallet, respectively. The constant
D is derived from the material properties of the colliding
objects. As the surface of the bar is nearly planar and
its size is much greater than that of the mallet head, the
limit rB →∞ is taken. In this case a non-linear relation
of force and compression is attained:

F =

√
rM
D

δ
3
2

M . (7)

Using (7), the equation of motion for the mallet head is
written connecting the compression and the acceleration
of the mallet head. Then, the motion of the mallet can
be estimated by a suitable time stepping scheme.

Figure 3: Mode frequencies of the 16 rosewood xylophone
sound bars

Interaction of mallet and sound bar
When in contact with the sound bar, the compression of
the head results as the di�erence of the displacement of
the mallet head and that of the bar in the position of
the contact. Thus, the interaction needs to be calculated
by solving the FEM equation (5) and the equation of
motion for the mallet head simultaneously. However, the
computation has to be done in time domain, due to the
non-linear relation (7). Equation (5) reads in the time
domain as
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]
+Cc

∂
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]
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∂2
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]
=
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]
. (8)

Equation (8) is solved by the Newmark time stepping
scheme [3] in a predictor�corrector manner. First, the
interaction force is predicted based on the current dis-
placement of the mallet and the sound bar. Then, the
coupled system is solved with the predicted force, and
�nally, the dynamics of the mallet are corrected using
the updated displacement of the sound bar. Using this
method the vibration of the sound bar and the oscilla-
tions of the acoustical �eld are calculated both during
interaction and free vibration for all time steps.

RESULTS
Modal behavior of the sound bars
The most important information about the vibration of
the sound bars are the eigenfrequencies and the mode
shapes. Figure 3 shows the relative frequencies of the �rst
few eigenmodes, where the vertical axis is normalized by
the frequency of the �rst vertical mode of each sound bar.

First, the computations were performed using the or-
thotropic elastic parameters (Young moduli and Poisson
factors) found in [4]. However, in order to match the
�nite element models to the measured fundamental fre-
quencies, the longitudinal elastic modulus was tuned for
each bar. In most of the cases a change of < 10% of
the original value gave a satisfactory result, but for the
two lowest and highest notes the Young modulus need
to be lowered by as much as 30% compared to the ref-
erence value. This highlights the uncertainty of the ma-
terial parameters. After tuning the fundamental mode,
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Frequency [Hz] Q-factor

Res. Meas. Sim. Lossy Sim. Lossy

1 305.5 328 327 18.22 16.35
2 386.5 399 397 11.08 10.45
3 559.0 556 553 9.75 8.78
4 641.5 640 636 7.03 6.49
5 740.5 751 748 5.11 4.79
6 1007.5 1024 1020 3.41 3.40

Table 1: Measured and simulated natural frequencies and
quality factors of the cavity resonators

the frequencies of the second and third vertical bending
modes did not match perfectly with the measurements,
but the average errors were found to be only 2.7% and
6.5%, respectively.

In Figure 3 the 1 : 4 : 10 tuning ratio of the �rst three ver-
tical modes is clearly visible. The 1 : 4 ratio is achieved
quite well in the whole range, whereas the 1 : 10 ratio
decreases gradually to 1 : 7 in the upper range H4�A5.
This result is explained by the fact that in order to keep
the width and thickness of the bars constant along the
scale, the length of the undercut must be decreased to
keep the 1 : 4 tuning.

Natural frequencies of the resonators
The resonance properties of the six cavity resonators
of the xylophone model were simulated by exciting the
acoustical model by an external point source. The re-
sults of the simulations are compared to measurements
in Table 1. Very good correspondence is seen, in case of
the 4th resonator the di�erence is only 1.5Hz, while the
highest relative di�erence is 5%.

Due to the relatively large area of the neck of the res-
onators, the quality factors decrease signi�cantly with
increasing the frequency. When the wall losses due to
viscosity are also incorporated into the model, the re-
sulting frequencies and Q-factors become slightly lower.
As the radiation losses are already greater at higher fre-
quencies, the e�ect on the Q-factors is greater for the
lower resonators.

E�ects of the non-linear interaction
When examining the fully coupled model excited by the
hit with the mallet, changing the position or the strength
of the excitation can be both expected to have a huge in-
�uence on the radiated sound. The time histories of the
interaction force are displayed in Figure 4 with chang-
ing the initial velocity of the mallet head. As observed,
higher velocities result in greater maximum of force. At
the same time, the interaction time is decreasing, due to
the non-linear force�compression relation (7). Shorter in-
teraction time also means higher cut-o� frequency, thus,
stronger hits by the mallet can more e�ciently excite
higher modes of vibration. Thus, both the loudness and
the timbre are a�ected by the strength of the hit.

Changing the position of the excitation
Figure 5 shows the radiated sound spectra with changing
the position of the excitation. The upper diagram shows

Figure 4: Time histories of the interaction force of a hard
mallet head and a sound bar with changing the initial velocity

Figure 5: Radiated sound spectra when hitting the bar near
its end (upper) and at the middle (lower)

the case when the mallet hits the bar near to its end,
while in the lower diagram the mallet hits the center of
the top surface of the bar. In the second case the second
partial has much lower amplitude and a partial around
9.5 kHz is also missing. At the mid-length of the bar the
even vertical bending modes have a nodal line and these
modes are not excited. Hence, changing the position of
the excitation results in a change of the timbre.

The four di�erent colors in each diagram correspond to
listener positions at di�erent angles. As seen, the direc-
tivity does not have a signi�cant e�ect in this case.

Energy relations of the coupled system
The coupled �nite element simulation allows for analyz-
ing the energy relations of the subsystems. For the pur-
pose of this analysis, the simulation is divided into two
stages: interaction and free vibration. The energy rela-
tions in the two stages are shown in Figure 6, side by
side. The green curves show the total energy, with the
kinetic energy left in the mallet head not shown in the
free vibration stage. As observed, the model perfectly
preserves the total energy.

It is visible on the left diagram how the energy of the
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Figure 6: Energy relations of the subsystems of the coupled model during interaction (left) and free vibration (right)

mallet head (orange curve) is transferred to the bar (pur-
ple curve) during the interaction. The hammer head can
store both kinetic (blue curve) and potential (red curve)
energy. Interestingly, the minimum of kinetic and maxi-
mal of potential energy is not found at the time instance,
which can be attributed to the motion of the sound bar.

On the right hand side, the free vibration stage is visible.
Initially, only the sound bar has mechanical energy (blue
curve), which is transferred to acoustical energy stored in
the sound �eld (yellow curve), radiated acoustical energy
(purple curve), and also dissipated by the internal losses
of the sound bar (red curve). The dashed line shows the
energy entrained by the hit with the hammer. In this
case the resonator is untuned and hence only a relatively
small portion of energy is radiated into the far �eld.

Tuning the resonator
On the original xylophone model one cavity resonator
served multiple (2 or 3) sound bars. However, better
tuning can be achieved if each sound bar has a dedicated
resonator. When the resonator is perfectly tuned to the
associated sound bar, such that their fundamental fre-
quencies are almost equal, the energy relations change
strikingly compared to that visible in Figure 6. The
mechanical energy stored in the sound bar decays much
faster, while a high amount of acoustical energy is ra-
diated rapidly and much less mechanical energy is dis-
sipated by the internal losses of the bar. As expected,
the sound pressure level becomes remarkably higher in
the tuned case, and the decay time decreases drastically,
as shown in Figure 7. These results underpin the impor-
tance of the proper tuning of the resonator, as it assures
e�cient radiation and a pleasant decay of the sound.

SUMMARY
A coupled 3D �nite element model was introduced in this
paper for examining the design and sound production of
a xylophone. The comparison of simulated and measured
natural frequencies of sound bars and resonators shows
very good agreements. Using the coupled model, vari-
ous interesting examinations were demonstrated, such as
changing the parameters of the excitation, the tuning of
the resonator, and the analysis of the energy relations of
the system. Finally, the proposed model is also suitable

Figure 7: Sound pressure levels radiated by a struck xylo-
phone bar coupled to a tuned and an untuned resonator

for physics-based sound synthesis purposes.
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