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Introduction
A head-related transfer function (HRTF) is a filter to
describe the sound incidence from a source, which is typ-
ically in the far-field, to the left and right ear, incor-
porating both monaural and the binaural cues. For a
full-spherical representation of sound incidence, it is nec-
essary to acquire a large number of HRTFs for any lo-
cation on a sphere surrounding the head. Even though
it is possible to use a generic HRTF set, the use of an
individual HRTF set can increase the localization where
the interaural time difference is low, e.g. on the saggi-
tal plane, and individual spectral cues are important for
localization[Wen93].

There are several ways to measure such individual full-
spherical HRTF datasets, most of them require a large
amount of equipment and effort[Bri19][Ric19]. To make
such measurements available to a broader audience, e.g.,
to institutions without access to anechoic chambers or
measurement robotics, one possible approach could be
a simple self-guided measurement setup. In this ap-
proach, the HRTF is captured conventionally as an im-
pulse response with a loudspeaker and in-ear micro-
phones. While the loudspeaker is fixed in position, the
subject is free to rotate his head and trigger measure-
ments by choice with a remote control. To associate
a measurement with the correct angle of sound inci-
dence, the subjects head orientation is traced by a head-
tracker. Afterwards, the measurements can be further
post-processed, e.g., to compensate for head movement
errors or room reflections.

While this approach is quite easy to perform, it is hard to
get a even distributed full-spherical measurement. I.e., it
is not trivial to measure all elevation positions on the lat-
eral plane without extensively tilting the head. At some
point during the measurement, the user needs some in-
structions that guide him explicitly to necessary angles
that might have been left out. A good compromise be-
tween user freedom and guidance would be a two-step
approach where in the first step, the user is free to per-
form some measurements. In the second step, an algo-
rithm computes and proposes some additional measure-
ment positions based on the existing measurements.

In this work, we focus on such an algorithm to find ad-
ditional points to an existing random point set on the
sphere. First, the basic principle of the algorithm is out-
lined. Then, we focus on the core elements of the algo-
rithm, these are the pre-selection stage and the testing
stage, as explained in the overview. Afterwards the re-
sults are evaluated and discussed.
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Figure 1: Schematic outline of the algorithm

Considering a given arbitrary set of L sampling posi-
tions as spherical angles ~ΩL = {Ω1, · · · ,ΩL} with Ω ≡
(φ, θ) ∈ S2, where φ is the azimuth and θ the elevation.
To determine the optimal placement for K additional
sampling positions, we need to test step-by-step every
possible combination of K positions out of a candidate
position set ~ΩQ.

First, we need to define a suitable candidate point set
out of a dense basis grid by identifying the areas where
the input point set has significant gaps. This step is
described in detail in the following section Pre-selection
of point candidates.

Then, in a repetitive process, a combination of K points
is picked from the candidate point set and is added to the
input point set. This joint point set {~ΩL

~ΩQ} is tested
against a certain criterion to determine the improvement
regarding an even point distribution. This is repeated for
every possible combination out of the candidate point set.
To measure the improvement of a grid, a suitable test
has to be applied. Two variants of such a test criteria
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are presented in the following sections Test variant 1:
Matrix condition number and Test variant 2: Minimum
Point Distance.

To test every combination of K positions out of the
candidate point set ~ΩQ with Q positions, we have to

iterate over every possible subset ~ΩK ⊂ ~ΩQ that has
K elements, and evaluate the resulting set of positions
~ΩLK = {~ΩL, ~ΩK} for a certain condition. The num-
ber of combinations is given by the binomial coefficient
C =

(
Q
K

)
= Q!

(Q−K)!K! .

Pre-selection of point candidates
The number of different combinations increases rapidly
with the number of point candidates and therefore has
an enormous impact on the computational complexity of
the algorithm. To keep the amount of candidate points
adequately low, the surface of the sphere is divided into
areas where the given input set ~ΩL has large spaces be-
tween points and areas of high point density. To do so,
we assign every point Ω on the surface with a angular
distance value to the closest point of ~ΩL:

d(Ω) = min
Ωl=Ω1,··· ,ΩL

|Ωl − Ω| (1)

The resulting mapping for an example random point dis-
tribution ~ΩL can be seen in Fig. 2a. Based on this map-
ping, we can select points from a dense basis grid, e.g.
a grid as proposed in [FM99], that lie above and be-
low a certain threshold, e.g. the average distance. The
points below this threshold are considered to be no suit-
able candidates since they are too close to an originally
given point. So the candidate point set is reduced to the
values above the threshold, as can be seen in Fig. 2b. The
threshold could also be dynamically adjusted in regards
to the desired number of candidate points.

Test criteria 1: Matrix condition number
It is common in spatial audio processing to decompose
a function like a sound pressure distribution on a sphere
with orthogonal basis functions called spherical harmon-
ics (SH). This process is called the spatial Fourier trans-
form (SFT). If the function is sampled at arbitrary points
on the sphere the SFT can be performed by a least-
squares approximation with the use of a spherical har-
monic matrix (SHM) Y , more precisely with its pseu-
doinverse Y †[Raf15]:

f = Y fnm (2)

fnm = Y †f (3)

where f are the function values sampled at L positions
and fnm are the (N + 1)2 SH coefficients with N as the
SH order.

Y itself is of dimensions L× (N + 1)2, each row contains
the spherical harmonics Y m

n (Ω) up to order N for one
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Figure 2: Pre-selection of points: (a) the nearest
neighbour distance for every position on the grid in rela-
tion to a 15 point random grid (b) based on the function,
the 80 most distant points are selected from a predefined
underlying grid, in this case a 676 point Fliege/Maier
grid

sampling position Ωl.

Y =


Y 0

0 (Ω1) Y −1
1 (Ω1) Y 0

1 (Ω1) · · · Y N
N (Ω1)

Y 0
0 (Ω2) Y −1

1 (Ω2) Y 0
1 (Ω2) · · · Y N

N (Ω2)
...

...
...

. . .
...

Y 0
0 (ΩQ) Y −1

1 (ΩQ) Y1(ΩQ) · · · Y N
N (ΩQ)


(4)

Different sampling schemes provide varying numerical
stability for the SFT of a particular order N [Zot09]. A
common indicator for the stability is the condition num-
ber κ of the SHM [RH17], defined in the euclidean way as
the product of the L2-norms of the SHM and its inverse:

κ(Y †) = κ(Y ) = ‖Y ‖2
∥∥Y −1

∥∥
2

(5)

The lowest possible condition number κ = 1 is only
achieved for optimal grid configurations.

Since the SHM for a particular order only depends on
the number and the arrangement of sampling positions,
and not on the function data itself, κ is well suited as
a quality indicator of a sampling grid. When comparing
grids with the same number of points, a lower condition

DAGA 2020 Hannover

1166



number indicates a more even distribution of sampling
points around the sphere.

When transferred to the original problem of adding sam-
pling positions, the criterion to be tested for is the matrix
condition number κ. κ is derived from the SHM for each
joint point set ~Ωc = {~ΩL, ~ΩKc}. The iterative search can
be expressed as a minimisation problem for C combina-
tions of ΩK :

min
ΩK1,··· ,ΩKC

κ(Y (ΩL,ΩKc)) (6)

Due to the vertical alignment of the sampling positions
inside a SHM, we can compute the SHM’s for ~ΩL and ~ΩK

separately, so only the SHM for the new points has to be
computed at every iteration step. Then, the condition
number is calculated for the vertically joint SHMs:

min
ΩK1,··· ,ΩKC

κ(

[
Y (ΩQ)
Y (ΩKc)

]
) (7)

Test criteria 2: Minimum point distance
An even point distribution of a certain number of points
on a sphere can be asymptotically achieved by solutions
to the hard-spheres problem [SK97]. The idea is to place
points around a sphere in a way that the smallest distance
between any of the points is as large as possible.

Regarding the problem of adding sampling positions ΩK

to a given set of sampling positions ~ΩL, we can evaluate
~ΩLK in this manner.

For every combination of new points ~ΩKc, the smallest
distance between any of the points (in the combined point
set) is determined.

m(~Ω) = min
1≤i,j≤M

|Ωi − Ωj | (8)

Since the distance between the existent point does not
vary, it is sufficient to evaluate the distances from the
new points to the existing points and to the other new

points. This minimum distance m( ~Ω) is the criterion to
be tested for and should be maximised.

max
ΩK1,··· ,ΩKC

m(~ΩKc) (9)

Weighted distribution of sampling points
For for most binaural reproduction environments, the po-
sitions around the horizontal plane are of most interest.
A higher density is desired around the horizontal plane
while the density towards the north and south pole are
becoming less important. To compensate this, the al-
gorithm should employ a weighting as a function of the
elevation distance from the horizontal plane.

The idea is to apply a scalar weighting factor w to every
point candidate depending on its elevation θ:

w(θ) = 1−
∣∣∣2θ
π

∣∣∣ θ = −π
2
, · · · , π

2
(10)

So every combination ~ΩK of N new points receives a
weighting W with the average sum of the N weights of
its candidates:

W (~ΩK) =
1

N

N∑
k

w(θ(Ωk)) (11)

Thus, Eq. 9 becomes

max
ΩK1,··· ,ΩKC

m(~ΩKc)W (~ΩKc) (12)

By choosing a suitable weighting function alternatively
to Eq. 10, a desired point distribution can be achieved.

Results
Both algorithms were implemented in Matlab and tested
for computing time as well as the effect of improvement.
The tests covered various combinations of the candidate
point set density, the number of candidate points after
pre-selection and the number of desired additional points.

The computing time depends on the number of desired
points as well as the number of candidate points. Fig. 3
shows a comparison between the two presented algo-
rithms. The results display clearly that the point dis-
tance algorithm outperforms the SHM condition algo-
rithm.
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Figure 3: Computing time dependent on the number of
point candidates, for a fixed number of desired additional
points k = 3 and k = 4, performed on a 2019 MacBook
Pro (2,3 GHz Intel Core i9)

Fig. 4 shows 4 additional points for a random uniformly
distributed sample point set, obtained with each of the
two algorithms. Even though there are some minor vari-
ances in point placement, both algorithms delivered sim-
ilar results for improving the overall quality of an HRTF
dataset.

To quantify the quality improvement for actual HRTF
data, we simulated a 15 point HRTF measurement by
obtaining HRTFs from a dense reference set [Ber13] for
15 random directions. This 15-point set was extended by
the two algorithms with 4 additional points and their cor-
responding HRTFs. Then we upsampled the random set
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and the extended sets with a third-order SFT to obtain
sets on the positions of the reference grid. To compare
the resampled sets to the reference set, we calculated the
difference in spectral magnitude and averaged over all
sampling positions of a set. This process was repeated
for several times with different random grids, Fig. 5 shows
the averaged results for 100 trials. Both approaches de-
livered similar results and improved the random grid.

Note that the 4 additional sampling points were calcu-
lated with 30 candidate positions, obtained from an un-
derlying 324 point (17th order) Fliege/Maier grid, with a
computation time of about 1 second for maximum point
distance approach and 19 seconds for the SHM condition
number approach.
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Figure 4: Additional points to an exemplary random
sample grid, computed by the two variants of the algo-
rithm.

1k 10k 20k
Frequency in Hz

0

5

10

15

20

25

M
ag

ni
tu

de
 E

rro
r i

n 
dB

Unprocessed
Max dist.
SHM cond.

Figure 5: Magnitude error between the upsampled sparse
HRTF sets and the dense reference HRTF set, averaged
over all sampling positions and over several trials. Only
left part of an HRTF is displayed.

Conclusion
In this work, we introduced an approach with two vari-
ants for finding additional sampling positions to an arbi-
trary sampling grid, based solely on the grid positions
itself. Furthermore, we showed how to increase com-
puting efficiency by preselecting the possible candidates.
The results showed that it is possible to reduce the error
caused by very sparse HRTF sets by adding a few points
to suitable positions, even with a small number of candi-

dates and therefore a small amount of computing time.
This improvement is beneficial during sparse self-driven
HRTF measurements with non-optimal position distri-
bution, giving the user a quick improvement without the
need for any evaluation of the actual measured data.

The pre-selection of candidate points requires some care
in terms of selecting the right angular resolution of the
underlying candidate grid. If the resolution is too low,
the overall error improvement might be suboptimal. If
the resolution is too high, the areas covered by the can-
didates is too small, giving the potential risk of missing
out an optimal position in the resulting points.
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[Ber13] Benjamin Bernschütz. “A Spherical Far Field
HRIR/HRTF Compilation of the Neumann
KU 100”. In: Fortschritte der Akustik – AIA-
DAGA 2013 (2013), pp. 592–595.

[Raf15] Boaz Rafaely. Fundamentals of Spherical Ar-
ray Processing. Springer Topics in Signal Pro-
cessing, 2015.

[RH17] C Sandeep Reddy and Rajesh M Hegde. “On
the Conditioning of the Spherical Harmonic
Matrix for Spatial Audio Applications”. In:
(2017), pp. 1–12.

[Bri19] Fabian Brinkmann et al. “A Cross-Evaluated
Database of Measured and Simulated HRTFs
Including 3D Head Meshes, Anthropometric
Features, and Headphone Impulse Responses”.
In: Journal of the Audio Engineering Society
67.9 (Sept. 2019), pp. 705–718.

[Ric19] Jan-Gerrit Richter. Fast Measurement of Indi-
vidual Head-Related Transfer Functions. 2019.

DAGA 2020 Hannover

1168


