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Introduction

Sound source localization with microphone array mea-
surements is widely used e. g. for error detection or im-
provements of products concerning their acoustic prop-
erties. Advantages are that common algorithms such as
Conventional Beamforming [1], Functional Beamforming
[2] or deconvolution techniques (e. g. CLEAN-SC [3]) are
robust and fast. Disadvantages are that these methods
are limited in the lower frequency range, usually free radi-
ation is assumed and only the amplitude of sound sources
can be recovered. Results of these methods are maps of
the acoustic source strength (or sometimes the acoustic
pressure) plotted in one plane.

In [4] an inverse scheme using microphone array mea-
surements and finite element simulations was introduced.
An extension to this scheme is presented so that sound
sources on surfaces are modeled as vibrating surfaces, i. e.
the normal component of the acoustic particle velocity is
identified in amplitude and phase.

Inverse Scheme

The inverse problem as presented in [4] is to reconstruct
sound sources from microphone measurements pms

i . The
underlying idea of the presented method is to match the
acoustic pressure of a measurement and a finite element
simulation at M certain microphone positions. In other
words the error between the measured acoustic pressure
pms
i and computed acoustic pressure pa, both evaluated

at the discrete microphone positions xi, is minimized.

We assume that the original geometry of the setup and
Fourier-transformed acoustic pressure signals pms

i (ω) (i =
1, ...,M) are given. We define a domain Ω that consists
of a domain Ωacou ⊂ Ω and Ωsc ⊆ Ωacou. We assume the
sound sources to be located in Ωsc and on ∂Ωsc and the
microphones to be at positions xi ∈ Ωacou, see Fig. 1.
At the outer boundary ∂Ω we can either apply sound
hard boundary conditions that lead to full reflection or we
apply boundary conditions that lead to – in practice more
realistic – partial reflections. This can be accomplished
e. g. by applying impedance boundary conditions or by
modeling acoustic absorbers as a separate region as an
equivalent fluid with complex material properties [5].

The forward problem in its strong form is defined in fre-
quency domain as

∇ · ∇pa + k2pa = σ in Ω, (1)

also known as the Helmholtz equation. The reconstruc-
tion of sound sources is performed for a fixed angular

Figure 1: Sketch of the domain Ω.

sound frequency ω. In Eq. (1) pa denotes the acoustic
pressure, k = ω/c0 the wave number whereby c0 is the
speed of sound. The modeling of sound sources σ on the
right hand side will be discussed later.

Since we solve the forward problem via the finite element
method, we derive the weak form of Eq. (1) by multiply-
ing with an arbitrary (complex valued) test function p′

and integrating by parts∫
Ω

(
∇pa · ∇p̄′ − k2pap̄

′) dx =

−
∫
Ω

σinp̄′ dx +

∫
∂Ω

∇pap̄
′ · ds ∀p′ ∈ V.

(2)

Here, σin are sound sources in the volume and a bar
denotes complex conjugation. Further, V denotes the
function space of the test functions p′, which is a real
Hilbert space [4].

Modeling of sound sources

We now want to focus on two different ways of modeling
the sound sources. The first approach – referred to case
(a) throughout this paper – is to model sources in the
volume as well as on the boundary as monopole sources.
This leads to the ansatz

σin + σbd =

N∑
n=1

ane jϕnδxn
.

Here, N = N in +Nbd the number of possible sources in
the domain Ωsc and on its boundary. In the finite element
framework N equals the number of nodes in the source
region. Further, an is the amplitude and ϕn the phase of
the n-th sound source and δxn

is the delta distribution
evaluated at the point of the n-th sound source.
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The second approach – called case (b) – models sources at
the boundary ∂Ωsc as the normal component vn = va ·n
of the acoustic particle velocity va. This normal com-
ponent equals the normal component of the mechanical
velocity at ∂Ωsc as the interface condition of acoustic
particle velocity and mechanic velocity

(va − vm) · n = 0 (3)

holds. This approach seems to be more appropriate when
we think e. g. of reconstructing sound sources at vibrat-
ing surface such as a rolling tire.

Due to the linearized equation of mass conservation in
time domain

ρ0
∂va

∂t
= −∇pa, (4)

with the density ρ0, we can rewrite the surface integral in
Eq. (2), which is in frequency domain, assuming constant
density ∫

∂Ω

∇pap̄
′ · nds = −jωρ0

∫
∂Ω

vnp̄
′ ds. (5)

This leads to the approach

σ =

N in∑
n=1

ane jϕnδxn
+ jωρ0

Nbd∑
m=1

vn,me jϕmNm . (6)

In Eq. (6) σ = σin+σbd andNm(x) denotes finite element
nodal basis functions on Ω satisfying the delta property
Nm(xn) = δmn.

In order to include also delta pulses, we consider sound
sources as elements of the dual space V ∗, so that Eq. (2)
becomes

A(pa, p
′) := Re

∫
Ω

(
∇pa · ∇p̄′ − k2pap̄

′) dx

 =

− Re
(
〈σin + σbd, p̄′〉V ∗,V

)
∀p′ ∈ V.

(7)

Since the imaginary part is redundant, we only consider
the real valued problem.

Optimization problem

Fitting of the parameters by means of Tikhonov regular-
ization amounts to solving the constrained optimization
problem [4]

min J(p, a, ϕ) s.t. ∀v ∈ V :

A(pa, p
′) = −Re

N in∑
n=1

ane jϕn p̄′(xn)


−Re

Nbd∑
m=1

ame jϕm〈µm, p̄
′〉V ∗,V


(8)

where

µm =

{
δxm case (a)

jωρ0Nm(x) case (b)
. (9)

The cost functional J is defined as

J(p, a,ϕ) =
Φ

2

M∑
i=1

|pa(xi)− pms
i |2

+ α

N∑
n=1

|an|q + β

N∑
n=1

ϕ2
n

− %
N∑

n=1

(
ln
(

π

2
+ ϕn

)
+ ln

(
π

2
− ϕn

))
,

(10)

with appropriately chosen regularization parameters α,
β and %. The exponent q ∈ (1, 2] leads to sparse source
reconstruction when chosen close to 1. The scaling factor
Φ should be chosen appropriately to ensure convergence
and avoiding numerical rounding errors. If Φ 6= 1 the
identified amplitudes need to be scaled back in order to
receive the correct values for the unscaled problem.

We define the following Lagrange functional that reads
for case (b) as

L(a, ϕ, p, z) = J(p, a, ϕ) +A(p, z)

+ Re

N in∑
n=1

ane jϕn p̄′(xn)


+ Re

jωρ0

Nbd∑
m=1

vn,me jϕm〈Nm, p̄
′〉V ∗,V

 .

(11)

The derivation of the calculation of the gradients dJ/dai
for case (a) using an adjoint approach can be found in [4]
and only minor changes have to be done for case (b).

Numerical Results

For testing purposes a simple 2D example was investi-
gated, see Fig. 2. The computational domain Ω consists
of a mechanical domain (green) and an acoustic domain
(grey: air, blue: PML), that are coupled via the above
mentioned interface condition on Γi (red), Eq. (3). The
region with perfectly matched layer (PML) is used to
model free radiation. The mechanical domain is excited
with a harmonic force density with f = 500 Hz and is
clamped at its short sides. In a first case the material
parameters are chosen in a way that the plate oscillates
at f = 500 Hz in its first mode and in a second setup in
its third mode. At ∂Ω sound hard boundary conditions
are applied. A regular mesh with linear quadrilateral el-
ements with the size of h = 0.01 m was used. Hence, the
recommendation of using 10 to 20 linear elements per
wave length (see e. g. [6]) is overfulfilled for f = 500 Hz.

Results for two different microphone arrays were investi-
gated, see Fig. 2. Array 1 is a semicircular array arranged
around the oscillating plate, array 2 consists of the same
semicircular array with an additional line array.

Identifying the acoustic particle velocity

Results for the two eigenmodes using the two different
array configurations depicted in Fig. 2 are shown. The
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(a) Semicircular array
(Array 1).

(b) Semicircular array with
line array (Array 2).

Figure 2: Computational domain: mechanical domain
(green), air (grey), PML (blue) and interface Γi (red).

phase value of the pressure excitation in the mechanic
domain is fixed to ϕex = −π/4, therefore the phase angle
of the velocity is ϕ = +π/4. All results for the identified
and original normal component of the acoustic particle
velocity vn are plotted along the interface Γi in ampli-
tude and phase. The values of the forward computation
are depicted in blue, the identified values for case (a) are
shown in green and for case (b) in orange. In case (a) the
values for vn are calculated as a post processing result,
as we identify point sources on the surface, in case (b)
the values for vn are identified directly, so no postpro-
cessing is needed. Therefore the velocity in case (a) is
an element result whereas in case (b) it is interpolated
between nodes.

Figure 3 shows the identified normal component of the
acoustic particle velocity when the plate is oscillating in
its first eigenmode. When using only the semicircular ar-
ray (Fig. 3a), the identified amplitude is underestimated
in both cases (a) and (b), whereas results are slightly
better in case (b). The results for the amplitude improve
in both cases, when using the line array additionally,
Fig. 3b. In case (b) the recovered amplitude matches
very well. The phase is also reconstructed well. How-
ever near the clamped ends it deviates from the forward
computation. We want to point out that no additional
information such as clamping etc. is used for the inverse
computation.

The results for the plate oscillating in its third eigenmode
are shown in Fig. 4. The third mode is not identified
when using the semicircular array, neither for case (a)
nor for case (b). Even if the additional line array is used,
the mode is not reconstructed correctly, but in case (b)
the amplitude improves slightly.

If we choose a different scaling value Φ for the first term
in the cost functional J in Eq. (10), we can improve
the identified amplitude in case (b). The phase however
worsens, see Fig. 5.
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(a) Results for semicircular array.
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(b) Results for semicircular array with line array.

Figure 3: Results for identified vn, the plate is oscillating in
its first eigenmode; forward calculation (blue), reconstruction
case (a) in green and reconstruction case (b) in orange.
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(a) Results for semicircular array.
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(b) Results for semicircular array with line array.

Figure 4: Results for identified vn, the plate is oscillating in
its third eigenmode; forward calculation (blue), reconstruc-
tion case (a) in green and reconstruction case (b) in orange.
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Figure 5: Results for identified vn with different scaling
value in functional J ; forward calculation (blue), reconstruc-
tion case (a) in green and reconstruction case (b) in orange.

Sound fields

Although the results for the identified acoustic particle
velocity are not always correct, the reconstructed sound
pressure field is very similar to the one in the forward sim-
ulation, see Fig. 6. This demonstrates the ill-posedness
of the problem. It also becomes clear, why the third
eigenmode is only reconstructed correctly, if we add mi-
crophones that are closer to the vibrating beam, as the
sound field is only unique in the near field. In the far field
the sound pattern that is radiated by the third mode is
very similar to the one radiated by the first mode. In
practical application this could cause some challenges, as
it might not always be possible to place microphones very
near to a vibrating object.

(a) Forward computation:
real part of sound pressure.

(b) Forward computation:
imaginary part of sound pres-
sure.

(c) Inverse computation: real
part of sound pressure.

(d) Inverse computation:
imaginary part of sound
pressure.

Figure 6: Real parts of the sound fields in forward and in-
verse computation (case (b)), excitation with ϕex = −45 deg,
plate oscilating in its third eigenmode.

Conclusion

An extension to the inverse approach for acoustic source
localization using microphone array measurements and fi-
nite element simulation was presented. Numerical results
of a 2D test example for identifying the normal compo-
nent of the acoustic particle velocity were presented. This
modeling approach is appropriate to model sound sources
on vibrating surfaces. Advantages could be shown com-
pared to the case where sound sources on surfaces are
modeled as monopole sources. Further investigation need
to be done concerning the identification of higher modes
of vibrating surfaces, where results are not as good as in
case of the first mode. As we only match the simulated
sound pressure to the measured sound pressure at dis-
crete microphone positions, they have to be at locations
with high sensitivity. Finding the optimal microphone
positions will be a task of future research.
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