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Introduction

The dynamics characteristics of hydrodynamic bea-
ring(HDB), which is related to the rotation speed, have
an great influence on the dynamics response of rotating
machines. When a certain rotation speed is reached, dy-
namics characteristics of HDB can lead to the instability
of rotating system [1,2]. This fluid-induced instability will
bring a severe damage to the rotating system. Therefore,
the stability analysis is necessary for a rotating system
with hydrodynamic bearing.
In the past, many approaches are presented to evaluate
the stability threshold. For example, Marhomy [3] used
the Routh-Hurwitz method to investigate the stability of
a rotor-bearing system. Dyk [4] compared different bea-
ring models, and determined the stability threshold by
using Routh-Hurwitz method and numerical continua-
tion method. Based on bifurcation theory, Amamou [5]
discussed the stability problem of journal bearings by ap-
plying numerical continuation method. Smoĺık [6] used
the nonlinear simulation to evaluate the stability thres-
hold for a nonlinear rotor-bearing system. From previous
research, it can be concluded that the characteristics of
hydrodynamic bearing is the basis for the stability ana-
lysis. However, most of current researcches on stability
analysis ignored the misalignment effect caused by fac-
tors such as wear and deflection of shaft, which have a
great influence on the characteristics of bearing and sta-
bility threshold. To this end, the misalignment is conside-
red in the stability analysis in this paper [7]. At the same
time, there are some uncertain variables in the system,
such as clearance due to wear and viscosity due to the
changes of temperature. The characteristics of bearing
and stability threshold are varied with these uncertain
parameters. Therefore, the uncertainty analysis to eva-
luate the impact of these uncertainties is necessary. For
uncertainty analysis, there are two commonly used me-
thods. One is the sampling method represented by Monte
Carlo method (MCM). This kind of method can quan-
tify the uncertainty problem with a relatively accurate
result, but it is time consuming. Another method is the
non-sampling method represented by generalized poly-
nomial chaos (gPC) expansion. This method has been
widely used in uncertain problems since its high efficien-
cy and considerable accuracy [8–10].
The main purpose of this paper is to investigate the sta-
bility problem of rotor-bearing system considering the
misalignment effect, and evaluate the impact of inher-
ent uncertainties. The arrangement of this paper is as
follows: the process of determining the stability thres-
hold is discussed in first part, then the construction of

gPC expansion and the uncertainty analysis for stability
threshold is introduced, finally, a numerical case is given
in the last section.

Stability threshold

When considering the misalignment effect, the scheme of
the hydrodynamic bearing can be presented as Fig. (1)
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Abbildung 1: Scheme for the hydrodynamic bearing
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Where p is the oil-film pressure, h is the thickness of oil-
film, R is the radius of bearing, µ is viscosity, Φ is the
coordinate in circumferential direction, z is the coordi-
nate in width direction, Ω denotes the rotating speed.
Accordingly, two misaligned angles are introduced to de-
scribe the thickness of oil film [7], as shown in Fig. (1)
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Where e0 is the eccentricity of mid-plane, Φ0 is attitude
angle, α and γ are misaligned angles. The pressure of oil-
film can be calculated by finite difference method. After
that, the bearing forces can be determined by integrating
the pressure in the whole film{
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When the static load is applied in y direction, the bearing
force Fy equals to static load, and Fx equals to 0.

For a specific rotor-bearing system, the stability thres-
hold is described by the cross point of the startup curve
and borderline, as shown in Fig. (2). The startup curve
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is used to describe the equilibrium position at different
rotating speed under a constant static load. While the
borderline is used to describe the relationship between
eccentricity and natural frequency of rotor-bearing sy-
stem.
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Abbildung 2: Stability threshold

With a constant static load which usually equals to gra-
vity force, the startup curve can be obtained by using
Eq. (1) and (3).

The motion of a Jeffcott rotor supported by two symme-
trical hydrodynamic bearing can be described by{

mẍs + 2Fx = meΩ2sinΩt

mÿs + 2Fy = meΩ2cosΩt+W
(4)

Where ẍs and ÿs are acceleration components of shaft
center, and W denotes the static load in y direction. And
the bearing forces can be represented as the linear form
shown in Eq. (5) by using Taylor series expansion.{

Fx = Fx0 + kxxx+ kxyy + dxxẋ+ dxy ẏ

Fy = Fy0 + kyxx+ kyyy + dyxẋ+ dyy ẏ
(5)

Where x and y are displacement components of journal
center, and ẋ and ẏ are corresponding velocities. From
this point, the coefficients of displacements and velocities
can be calculated by combining the Eq. (1-5).

By substituting the Eq. (5) into Eq. (4), the characte-
ristic equation can be obtained. Further, the eigenvalue
can be solved, which is complex value. The real part of
eigenvalue represent the situation of vibration. In this
way, the borderline can be obtained since the dynamic
coefficients of displacements and velocities in Eq. (5) are
function of eccentricity. Then, with the startup curve and
borderline, the threshold can be obtained.

Uncertainty analysis

The gPC expansion is applied to represent uncertain pa-
rameters as the combination of a finite number of ortho-
gonal random polynomials with unknown deterministic
coefficients, i.e. for random parameter X in a random
sample space Γ → R, we have

X =

∞∑
i=1

xiΨi(ξ) ≈
N∑
i=1

xiΨi(ξ) (6)

in which ξ is the vector of the standard random variables,
xi are unknown coefficients, and Ψi(ξ) denote orthogo-
nal random polynomials . The optimal polynomials are

determined by the distribution of random parameters [8].
The unknown coefficients can be calculated by using the
Galerkin projection technique:

xi =
1

〈Ψ2
i 〉

∫
Γ

X(ξ)Ψi(ξ)f(ξ)dξ (7)

Where
〈
Ψ2
i

〉
denotes the norm of the i-th random po-

lynomial, f(ξ) represents the joint probability density
function (PDF) of the vector of random variables, and Γ
is the random space.

In this paper, the clearance c and viscosity of lubricated
oil µ are considered as random input parameter, which
can be represented by the truncated gPC expansion as:

c(ξ) =

N∑
i1=1

αi1Ψi1(ξ); µ(ξ) =

N∑
i2=1

αi2Ψi2(ξ) (8)

Owing to the uncertain input parameter, the stability
threshold becomes uncertain. Thus, the random thres-
hold can be expressed as:

Ωth(ξ) =
N∑
i3=1

βi3Ψi3(ξ) (9)

Since the mentioned gPC expansion is a truncated ex-
pression, there is an error between the random para-
meters and gPC-represented one. The collocation me-
thod [11] is usually adopted to minimize the error by cal-
culating the responses at some specific collocation points.
And the process of solving these deterministic responses
can be considered as a black-box. The collocation points
is the combination of the roots of one higher order po-
lynomial and zero if zero is not included in the roots.
With several collocation samples, the coefficients of the
truncated gPC expansion can be determined by the least
square method.

Numerical study

The parameters of bearing in [12,13] is adopted to study
the numerical case, as shown in Table. 1.

Tabelle 1: Parameters of bearing

Parameter value

Bearing radius (m) 0.1
Bearing length (m) 0.2

Clearance (m) 0.15e-3
Viscosity (Ns/m2) 8.45e-3

Rotating speed (RPM) 3000

The program to calculate pressure distribution and cha-
racteristics of bearing are verified by comparing with the
results in [12, 13], as shown in Table 2 and Fig. (3). It
can be seen that the current results agree well with the
results in literature.

In this paper, the uncertain input parameters c and µ are
assumed as the uniform and normal distribution, respec-
tively. The details for random parameters can be seen
from Table. 3.
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Tabelle 2: Maximum pressure of oil film

Eccentricity
pmax / bar

Ref. [13] Current
work

Difference
%

0.2 5.25 5.4 2.93
0.4 14.1 14.39 2.06
0.6 35.6 36.01 1.15
0.8 128 127.16 -0.66
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Abbildung 3: Attitude angle and comparison with references

Tabelle 3: Uncertain parameters and distribution

Parameter distribution

Clearance (1e-3 m) c ∼ U(0.1, 0.12)
Viscosity (1e-3 Ns/m2) µ ∼ N(8.45, 0.2)

Then, the uncertain threshold is represented by 3 order
gPC expansion. The PDF of the threshold is extracted
in Fig. 4. Meanwhile, the result from gPC expansion
are compared with that from MC simulation. The re-
sult shows a considerable accordance between these two
methods.
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Abbildung 4: PDF of threshold by gPC and MC

Conclusions

In this paper, the stability threshold of a rotor-bearing
system is investigated considering the misalignment ef-
fect and uncertainties in hydrodynamic bearing. The
threshold is determined by the cross point of startup cur-
ve and borderline. By comparing with the results from
literature, the accuracy of calculated results are verified.
The gPC expansion is employed to study the uncertain
impact from bearing. The results show that the gPC ex-
pansion can effectively describe the uncertainty parame-

ters of system with a considerable accuracy.
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