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Abstract
A new method to determine the acoustic reflection coeffi-
cient of surfaces in-situ is presented. It relies on a single
noise source and a single microphone. The method is
robust to low-end measurement equipment. It is derived
from the blind source separation problem where the orig-
inal but unknown signals are reconstructed from mixed,
observable signals. To do so, an analytical solution to the
mixing matrix is presented, based on the assumption of
a monopole source and a single reflection. The reflection
coefficient is derived from the short window coherence
of the mixed signals at different times. The method is
validated with simulated data.

Introduction
Knowledge of material properties is often necessary to
assess acoustic conditions. State-of-the-art methods de-
termine the reflection coefficient of absorber materials
by measurements in impedance tubes [1] or reverberation
rooms [2]. However, these methods require samples being
taken which can not always be realised such as in out-
door environments. A method DIN EN 13472 exists [3],
but the measurement setup needs to be calibrated care-
fully in a free-field room and is not robust to environment
changes. A method proposed by Lanoye et al. [4] allows
in-situ measurements of the reflection coefficient but re-
lies on sound intensity probes, which are both expensive
and sensitive. This paper presents a new in-situ approach
based on calculating the coherence of a signal with a re-
flection time-shifted copy. It relies on a short window
coherence Welch estimation and requires no knowledge
of the used signal, the microphone’s and speaker’s fre-
quency response or their calibration. Only the geomet-
ric distances between speaker, microphone and material
need to be determined, making this method’s experimen-
tal setup both fast and robust towards inaccuracies and
allowing for the use if low-end measurement equipment.

Procedure
The procedure of calculating the reflection coefficient
from the short window coherence is presented hereafter.

1. Generate a broadband noise signal (such as white or
pink noise).

2. Place a noise source and a microphone above the
reverberant surface and determine the distances be-
tween sound source, sensor and floor.

3. Measure the noise signal with a sampling frequency
that will allow the detection of the reflection time in
the autocorrelation later on.

4. Detect the time offset of the reflected sound via a
distance-based travel time estimation or autocorre-
lation.

5. Generate a second signal from the measured signal
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Figure 1: Experimental setup. d1 is the direct sound travel
distance and d2 = d2,a + d2,b is the total distance for the
reflection. d∆t = d2 − d1 is the travel distance difference
between reflected and direct sound to the microphone M .

which is shifted back in time by the time offset.

6. Calculate the coherence of these signals using a win-
dow length smaller than the time offset.

7. Calculate the reflection coefficient from the coher-
ence using eq. 13.

Theory
In figure 1 a schematic graphic of the problem consisting
of a single source, sensor and reflection is shown. We
can observe the microphone signal, we do not know the
speakers original signal and we are interested in the
properties of the reflective surface. The reflection coef-
ficient will be derived from the blind source separation
problem in the frequency domain. Thus, we focus on
time-invariant problems. We denote the Fourier Trans-
formation of the signal si with Si(f) = Ai(f)Qi(f) with
its frequency depended amplitude A(f), its phase Q(f)
and its cross-spectral density with Sij(f) = Si(f)S∗j (f).
The frequency dependency will be neglected in the
following for better readability.

The blind source separation problem consists of
true, uncorrelated signals St that are mixed with a
mixing matrix λ and results in new, observable signals
S.

S = λSt . (1)

The true signals amplitude At, its phase Qt with |Q| = 1
and mixing coefficients |λ| ≤ 1 are unknown. To solve
this problem we have to reconstruct the mixing matrix
λ that includes the reflection coefficient. To do so, the
problem is simplified by two assumptions. First, the mix-
ing is symmetric, thus λij = λji. This assumption is
valid in linear acoustics [5, p. 408]. Second, the sound
wave can be modelled by a simple geometric monopole
source [5, p. 70]. Thus, the mixing matrix can be derived
analytically. Accounting for the decay of sound pressure
and phase shift due to the propagation distance d we
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Figure 2: Schematic example of the signal s1 in time domain
which consists of random noise. The unique noise parts are
displayed with a unique colour and shape, their reflections
have a lower amplitude and appear after ∆t. s2(t) = s1(t +
∆t), it is shifted back by the reflection time ∆t.

model the monopole sound source with ω = 2πf and
k = ω/c

p(d, t) = At exp (−j(kd+ ωt))

d
= AtQtQd

d
. (2)

Note that the sources observable phase consists of the
source inherent phase Qt (dependent on time and fre-
quency) and its phase change due to the time and space
distance Qd (dependent on distance and wavenumber).
The reflection of a signal is modelled via the complex
reflection coefficient r [5, p. 179]

r = r0 exp(jϕ) . (3)

This neglects atmospheric dampening and non-linear ef-
fects. The phase shift due to the reflection will be de-
noted with Qr. Given there exists a single source and a
single reflective surface with a reflection coefficient r we
derive the mixing matrix λ using the previous assump-
tions with

λ =

[
Q1

d1

Q2Qrr0
d2

Q2Qrr0
d2

Q1

d1

]
. (4)

The observable signals are S = λSt

S1 =λ11S
t
1+λ12S

t
2

S2 =λ21S
t
1+λ22S

t
2 . (5)

At this point signal one and two are identical which
makes sense, as the source signal is the same and the mix-
ing matrix is symmetrical. Since we only have a single
source, we rewrite these equations for a reference source
time t0. We relabel At

i = A and Qt = Qt0 at the source
reference time t0. The phase shift due to the different
source emission times are denoted with Qt0±∆t. The
phase shift for the direct travel distance is Q1, for the
reflection we obtain Q2 = Q1Q∆t

S1 =
AQt0Q1

d1
+
r0QrQ1Q∆tAQt0−∆t

d2

S2 =
AQt0Q1

d1
+
r0QrQ1Q∆tAQt0−∆t

d2
. (6)

The equation system is still underdetermined as we do
not know r and A. To obtain an additional unique equa-
tion we shift S2 in time so that the travel time difference
between the direct sound and the reflected sound due
to the propagation distance difference is compensated.
Thus, the signals amplitudes and the mixing matrix are
still identical but the true signals phase changes. The
time shift and the observed signals are shown in figure 2.
In the schematic graphic in s1 at t = t0 the blue sine
represents the direct sound while the green square with
a lower amplitude represents the reflected sound wave
from t = t0−∆t. After the reflection time at t = t0 + ∆t
we detect the blue sine again with lower amplitude and
some new direct sound, displayed as the red triangle.
When we shift s2 back by the reflection time ∆t, so that
s2(t) = s1(t + ∆t), its reflected part matches the direct
part of s1 while the direct sound part of s2 is uncorre-
lated to s1. Thus, in s1 and s2 at t0 we have in total
three independent signal parts, indicated by their unique
source time phase. In frequency domain this time shift
is expressed by S2(t0) = S1(t0 + ∆t)/Q∆t, thus

S1(t0) =
AQ1Qt0

d1
+

r0QrQ1Q∆tAQt0−∆t

d2

S2(t0) =
AQ1Qt0+∆t

Q∆td1
+

r0QrQ1AQt0

d2
. (7)

From the condition of true, uncorrelated signals we
deduct that during signal averaging for the Welch es-
timation E [. . . ] [6] of the cross power spectral densities
that

|E
[
QiQ

∗
j

]
| =

{
0, for i 6= j

1, for i = j
. (8)

In our case we know that for Welch block size smaller
than ∆t the signal parts are only correlated when they
have the same source time phase, thus

|E
[
Qt0Q

∗
t0±n∆t

]
| =

{
0, for n ∈ Z \ {0}
1, for n = 0

. (9)

Calculating the cross power spectral density we find for
Sii = S11 = S22

S11 = E
[
A2|Q1|2|Qt0 |2

|Q∆t|2d2
1

+

A2r2
0|Q1|2|Qr|2|Qt0−∆t|2|Q∆t|2

d2
2

+ . . .︸︷︷︸
=0

]

= E
[
A2

(
1

d2
1

+
r2
0

d2
2

)]
. (10)

For Sij = S∗ji we find

S12 = E

A2r0|Q1|2Q∗r
d1d2

+ . . .︸︷︷︸
=0


= E

[
A2r0Q

∗
r

d1d2

]
. (11)
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At this point we already estimated the phase of the re-
flection coefficient with ∠r = ∠Sji but we still need to
find A and r0. To do so we use these relations and calcu-

late the magnitude squared coherence γ2
ij =

|Sij |2
SiiSjj

with

d0 = d1/d2, d0 ≥ 0 and A ≥ 0

γ2
12 =

|r0Qrd0|2

(1 + r2
0d

2
0)

2 =
|r0d0|2

(1 + r2
0d

2
0)

2 . (12)

Since the mixing is 0 ≤ r0 ≤ 1 we can directly calcu-
late the reflection coefficient from the coherence with the
quadratic formula

r0 = −
√

1− 4γ2 − 1

2γd0
(13)

in the interval 0 ≤ γ2 ≤ 1
4 . Note, we assumed that the

signals are only correlated within the time shift window.
This means that for Fourier analysis we can only use
block sizes that are smaller than the time shift. How-
ever, zero-padding is possible to achieve a reasonable fre-
quency resolution. Eq. 13 is independent of the original
sound source amplitude At. This means that neither the
amplitude of the signal nor the frequency response of the
microphone or loudspeaker has to be known. The only
requirement is that a sufficient signal is detected with an
omnidirectional microphone.

Influence of background noise
Outdoor measurements are often disturbed by back-
ground noise ŝ. Thus, its influence on the proposed
method is examined. Assume a noise source in the far-
field which is uncorrelated to our primary noise source
with the normalised amplitude Â/d1. The normalisation
by the distance of the original noise source makes a com-
parison easier. We also assume no reflections within the
Fourier window. This will result in an underestimation of
the coherence since the auto power Sii increases while the
cross power spectrum Sij remains the same. Finally, this
leads to an underestimation of the reflection coefficient.
We can quantify the underestimation using

Sii = E

[
A2

(
1

d2
1

+
r2
0

d2
2

)
+
Â2

d2
1

]
(14)

Sij = E
[
A2r0Q

∗
r

d1d2

]
. (15)

This leads to

γ2 =
|r0d0|2(

1 + r2
0d

2
0 + Â2

A2

)2 . (16)

Even small ratios of Â2/A2 have a big impact on the
estimation of r0. When the background noise source is
quasi-stationary we can prevent this underestimation by
first measuring the background noise ŝ exclusively and
subtracting its PSD Ŝ11 from S11 before calculating the
coherence γ2

mod.

γ2
mod =

|Sij |2

(Sii − Ŝii)2
(17)
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Figure 3: Experimental setup to determine r0 of a reflective
surface with the microphone M placed at hM = 1.0 m and
the speaker placed at hS = 2.0 m.

Results
An analytical example is given to illustrate the proce-
dure. A virtual speaker is placed at hS = 2 m, a virtual
microphone is placed at hM = 1 m above a reflective sur-
face, see figure 3. We calculate d1 = (hS − hM ) = 1.0 m
and d2 = (hS + hM ) = 3.0 m, d0 = 1/3. The reflection
coefficient r0 is modelled using a Bessel bandpass filter
of order=1, fl = 200 Hz, fh = 1500 Hz. A signal st is
generated using white noise with fs = 8192 Hz, t = 100 s.
Then the signal is lowered in amplitude and shifted in
time by λ11 to generate st1. To generate the reflected
signal sr1 the Bessel bandpass filter is applied and the
signal is shifted in time and lowered in amplitude by
λ12. The relative time offset between the signals is
∆t = (hS + hM )/c ≈ 0.0059 s with c = 340 m s−1 and
the relative amplitude (excluding the Bessel filter) is
At

1/A
r
1 = 1/(hS + hM ) = 1/3. The reflection time

corresponds to approximately 23 samples. Thus, a
Welch block size of nperseg = 22 is used. This results
in a very low frequency resolution (∆f ≈ 372 Hz) so a
zero padding with nfft = 256 is used and results in a fre-
quency resolution of ∆f = 64 Hz. To calculate the Cross
Spectral Density, the second signal s2(t) = s1(t+ ∆t) is
generated.

In figure 4 the results of the method are shown.
The real reflection coefficient is the bandpass filter
response, shown in black. Since we know St

11 we can
calculate the practical optimum for r0 that includes the
Welch estimation error. Using eq. 10 and the Welch
estimation E[St

11] for the true signal at the microphone
position St

1 = λ11S
t with

St
11 = E

[
A2

d2
1

]
(18)

S11 =E
[
A2

d2
1

(
1 + r2

0d
2
0

)]
, (19)

we calculate

r0 =

√(
S11

St
11

− 1

)
d−2

0 . (20)

The result is shown in blue. The result of the method
proposed in this paper is shown in red. The red dots indi-
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Figure 4: The true reflection coefficient (the bandpass filter
response, black) and the practical optimum that could be
determined due to the Welch estimation error (blue) using
eq. 20. The estimated degree of reflection using eq. 13 is
shown in red. The red dots indicate the frequency bins that
result from no zero padding.

cate the frequency bins that result from no zero padding.

Discussion
The proposed method to determine the reflection coef-
ficient relies on a single sound source and sensor. The
sensor and source must be omnidirectional to ensure that
the direct and reflected sound waves are altered by the
same microphone transfer function. Since the absolute
amplitude cancels out in the equations the sensor and
sound source can have any frequency response and
allow for low-end measurement equipment. To deploy
the proposed method the sensor signal must be copied
and shifted by the reflection time. The reflection time
can be determined by a geometric calculation or via
the autocorrelation. If the autocorrelation method is
used notice that by definition we will shift the signal
by the reflection time delay plus the phase shift of the
absorption material. This can be a problem for thick
absorption materials, especially when the phase shift
is frequency dependent. Otherwise, the phase of the
reflection coefficient will be zero. To obtain the correct
phase, the geometric travel time for the reflected sound
wave should be used.

When placing the sound source and the sensor we
have two make a trade-off. On the one hand, we want
to maximize the reflection time, which allows us to
use larger block sizes for the FFT. On the other hand,
we want to minimize the travel time difference as the
intensity of the reflected sound wave decreases with d2.
This results in an extremely low coherence. Due to the
non-linear relation in equation 13 between the coherence
and the reflection coefficient errors in the estimation
will be magnified. This is especially noticeable at low
frequencies compared to the block size. In the given
example the reflection coefficient was reasonably well
estimated above f ≥ 250 Hz. This is between the first

two frequency bins that would be achieved without
zero-padding for the Welch estimation. We can obtain
a higher frequency resolution by using zero padding,
but the quality of the results can not be improved due
to the Welch estimation error. The estimation in the
low-frequency region can not be improved as we would
need to increase the delay between the original and
reflected signal which on the other hand increases the
coherence estimation error due to the decay in amplitude
of the reflected signal.

The coherence estimation rapidly drops in the pres-
ence of a background noise source which results in an
underestimation of the reflection coefficient. For quasi-
stationary background noise sources we can eliminate
this effect by subtracting the exclusive background noise
PSD from S11 when calculating the coherence.

Conclusion
This paper proposes a method to determine a material’s
reflection coefficient in-situ using a single microphone and
a sound source. It is straight forward in its application
and does not rely on specialist hardware. The frequency
response of both devices and the employed broadband
signal does not need to be known. Assuming a monopole
source and a single reflection the reflection coefficient
is derived from the signal’s time-shifted auto-coherence
with FFT block lengths shorter than the reflection time.
This results in a low frequency resolution. Placing the
sensor further apart from the material increases the re-
flection time and frequency resolution but results in a
decrease of coherence estimation accuracy. The influence
of quasi-stationary background noise can be eliminated
but a high signal-to-noise ratio of the set-up is recom-
mended.
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