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Introduction
Within the next decades, the number of flights is ex-
pected to increase further on, leading to more and more
people exposed to cabin noise during flights. Noise levels
are known to be a major factor correlating with health
and well-being of the passengers and the crew. For the
development of future aircraft, an analysis of sound pres-
sure levels inside the passenger cabin with mechanical
models may help to avoid high noise levels by novel tech-
nologies. Furthermore, the knowledge of wave propaga-
tions through the aircraft structure serves as information
basis for the placement and effectiveness of smart noise
reduction measures. In this work, an existing model of
a generic aircraft fuselage segment considering all crucial
parts like the outer skin, frames and the interior lining
is applied to analyse sound pressure levels in the passen-
ger cabin. A wave-resolving finite element approach then
leads to a large linear system(

K− ω2M
)
x = f , (1)

containing fluid and structural domains. In (1), K is the
complex stiffness matrix 1 including structural damping,
M is the mass matrix and ω is the angular frequency.

Solving such a linear system under specific excitation f
many times to determine frequency response functions
x or even perform parameter studies is computation-
ally challenging. Especially in early design phases, nu-
merous uncertainties exist in the model parameters or
the geometry, optimisation may be conducted or de-
sign studies are planned. All iterations in design re-
quire several solutions of the model. Hence, in this
work, moment-matching model order reduction (MOR)
methods, specifically, Krylov-based model order reduc-
tion (KMOR) methods are investigated in order to re-
duce the computational costs. A separate application of
KMOR to (a) a plate structure and (b) a fluid volume is
conducted delivering helpful findings about the method.
Finally, KMOR is successfully applied to the generic air-
craft segment with all structural and fluid domains gain-
ing a drastic reduction of computational costs.

Projection-based model order reduction
The idea of projection based MOR is to describe the
evolution of the system variable x(ω) ∈ Rn from (1)
in a lower dimensional subspace of dimension r � n.
By defining a matrix V ∈ Rn×r which spans the space

1The underline indicating complex numbers is left out in all
following equations for better readability.

L = range(V), one can define the approximation

x(ω) ≈ Vxr(ω) . (2)

Substituting (2) into (1) gives rise to a residual

R(ω) = (−ω2M + K)Vxr(ω)− f(ω) . (3)

The residual can be minimised by defining a r-dimen-
sional trial space J , with a corresponding matrix W ∈
Rn×r such that range(W) = J and enforcing the Petrov-
Galerkin condition

WTR = 0 . (4)

A reduced order model (ROM) with system matrices of
size r × r is constructed as

(−ω2Mr + Kr)xr = fr (5)

with corresponding reduced matrices

Mr = WTMV, Kr = WTKV, fr = WT f . (6)

Different choices of V and W lead to specific versions of
reduced order modelling. In the next section the Krylov-
based approach is explained in detail.

Krylov-based model order reduction
Originally, KMOR [1] has been developed for first order
systems of the form{

sEx(s) = Ax(s) + Bu(s)

y(s) = CTx(s)
(7)

where u ∈ Rm and y ∈ Rp define the vector of m in-
puts and p outputs and x ∈ Rn is the state variable,
all depending on the Laplace variable s. The matrices
A ∈ Rn×n and E ∈ Rn×n define system matrices and
B ∈ Rn×m and C ∈ Rn×p define the input and output
map, respectively. The corresponding transfer function
reads

H(s) = CT (sE−A)−1B . (8)

As highlighted in [2], the basic idea of KMOR is to

determine a reduced order transfer function Ĥ(s) =

ĈT (sÊ− Â)−1B̂ via projection, by

Ê = WTEV, Â = WTAV, Ĉ = CV, B̂ = WTB (9)

that enforces a Hermite interpolation condition of H(s)

and Ĥ(s). This interpolation condition includes a cer-
tain number of derivatives (moments) at different inter-
polation points and is therefore referred to as moment-
matching property. It reads

dk

dsk
H(si) =

dk

dsk
Ĥ(si) (10)
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for k = 0, . . . , q and i = 0, . . . , j. Here, q denotes the
number of moments matched and j refers to the number
of interpolation points.

By defining the projection spaces V and W as Krylov
subspaces

Kq(A,b) = span{b,Ab,A2b, . . . ,Aq−1b} (11)

a moment matching property can be achieved, following
[1]: If the projection spaces are defined as

range(V) = Kq(Ã−10 E, Ã−10 B) (12)

range(W) = Kq(Ã−T0 ET , Ã−T0 C) (13)

with Ã0 = A− s0E (14)

the first 2q moments of the original and reduced order
transfer function match at the expansion point s0. The
theory can be extended to multi-point moment matching
by concatenating multiple shifted Krylov subspaces for
different shifts si such that

j⋃
i=1

Kqi(Ã
−1
i E, Ã−1i B) ⊂ range(V) (15)

j⋃
i=1

Kqi(Ã
−T
i ET , Ã−Ti C) ⊂ range(W) (16)

holds, where j denotes the number of expansion points.

In [2] and [3] the KMOR concept is transferred to second
order dynamical systems. At first (1) is equipped with a
input and output map B and C{

(−ω2M + K)x(ω) = Bu(ω)

y(ω) = CTx(ω)
(17)

In case of a single load, B ∈ Rn×1 is a vector that de-
scribes the distribution of the load and u just scales this
distribution. For a single output, C ∈ Rn×1 is a vector
as well and can be interpreted as a filter, that picks a
certain node of interest or calculates some norm of the
state variable.

To preserve the second order structure, the KMOR
method is directly applied to the second order system.
This approach leads to second order Krylov subspaces
for the projection spaces that yield the desired moment
matching property [3]. In the case of proportionally
damped systems, it is shown in [3] that the second order
Krylov subspace reduces to a first order Krylov subspace
and the projection subspaces for the system (17) results
in

range(V) = Kq(K̃−10 M, K̃−10 B) (18)

range(W) = Kq(K̃−T0 MT , K̃−T0 C), (19)

with K̃0 = K− ω2
0M . (20)

The space spanned by V is also called input Krylov sub-
space and the space spanned by W output Krylov sub-
space, since the first is build with the input map B and

the latter with the output map C. KMOR methods using
both spaces are called two-side methods, while methods
restricted to one space by setting W = V are called one-
side methods. One-side methods approximate the whole
output space, since no output filter is required, however,
come with the drawback of slower convergence, since less
moments are matched.

It is well known, that the Krylov vectors converge to the
eigenvector of the dominant eigenvalue of K̃−1M and
therefore do not provide a stable basis. For practical
implementation, numerical algorithms, like the Arnoldi
algorithm are used to construct a numerical stable (i.e.
orthonormal) basis of the defined Krylov subspaces. See
[4] for more details.

Model properties
The aim of the paper is the investigation of KMOR meth-
ods for a generic aircraft fuselage model. A fuselage seg-
ment, originated from works of the Coordinated Research
Center (CRC) 880 at TU Braunschweig is used as a refer-
ence model. The model includes the airframe (outer skin,
frames, floor), the insulation, the interior cabin lining and
the cabin fluid. In Fig 1, the different domains and the
coupling interfaces are sketched. All domains are discre-

Figure 1: Sound-transmission path of the generic aircraft
cabin model

tised by finite elements and 2D as well as 3D elements
with quadratic ansatzfunctions are used. For further de-
tails of the model the reader is referred to [6]. For sys-
tematic investigation, the complex model is decomposed
into its elementary submodels, describing the vibration of
structures, sound propagation in fluids and the coupled
vibro-acoustic problem. In Fig. 2, this approach is visu-
alised by presenting the complex generic aircraft model
and the derived simplified submodels. The KMOR algo-

Figure 2: Overview of generic and application models

rithms are first applied to the elementary submodels and
then used for MOR of the generic aircraft cabin model.
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All models are investigated in a frequency range of
50− 250 Hz, the material of the structural model is alu-
minium and the medium of the fluid model is air. The
discretisation is chosen such that a resolution of the
smallest wave length is ensured. The submodels are con-
structed for different modal densities by adjusting the
plate thickness or the size of the fluid cavity. The FSI
model is constructed by combining the structural and
fluid submodel.

Numerical Results
In this section the rational Krylov method based on the
Arnoldi algorithm [1] is applied to the models presented
in the last section. The accuracy of the ROM is deter-
mined by comparison against the full order model (FOM)
solution. This is only practical for theoretical investi-
gations, since in practise a FOM solution is often not
affordable and once at hand a ROM solution is superflu-
ous. However, error indicators are available which allow
to efficiently assess the MOR error in large scale appli-
cations, see [7] for further details. Here, the maximum
relative error over the entire frequency domain F

εrel = max
ω∈F

||y(ω)− ŷ(ω)||∞
||y(ω)||∞

(21)

is considered and required to be below a threshold of
εrel < 1e − 2. In case of a one-side method, the output
map C is chosen as the identity and consequently the er-
ror measure corresponds to a maximal global error, since
all nodes are represented in the output vector y. In case
of a two-side method, that uses a SISO map, the output
reduces to a scalar quantity and the corresponding error
can be interpreted as a local quantity (error in the output
node specified in the output map c).

Once the accuracy requirement is verified, there are dif-
ferent possible performance measures of a ROM. One is
the achieved speed-up of the total ROM computational
time against the FOM calculation

sup =
tFOM

tROM
. (22)

However sup depends on the number of calculated sam-
ples and a very fine sampling of the frequency domain
leads to a large speed-up. Another indicator is the final
size of the ROM, which has to be much smaller than the
FOM, since the sparsity of the FOM system is lost and
the offline computational cost has to be paid off. Here,
results for both performance measures are reported.

In the following it is explained how the ROM is con-
structed: The performance of the ROM depends on the
chosen expansion points and the number of moments
matched at these points. Keeping the number of expan-
sion points low is beneficial, because each new expansion
point requires the computation of a full size system fac-
torisation (increasing off-line cost). However, the positive
effect of adding moments reaches a saturation point.

The ROMs in this work are constructed manually by fix-
ing the expansion points a priori and increasing the num-
ber of moments until the accuracy conditions are met. In

Fig. 3, this process is demonstrated for the plate model
by displaying the error of different ROMs around one ex-
pansion point ωi = 150 Hz. The ROM associated with
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Figure 3: Top: Displacement at the excitation node of the
model Plate a. Bottom: Error analysis for three different
ROMs (red, green, blue)

the red, the green and the blue line matches 5, 10 and
20 moments at the expansion point, respectively. For an
increasing number of moments matched the converged
region expands locally from the expansion point. For 20
moments matched (blue line) the ROM error εrel is below
the defined threshold of 1e−2 in the whole considered fre-
quency range. Note, that a different choice of expansion
points might lead to an improved, i.e. smaller, ROM.
However, in practical engineering applications it is often
not important to find the smallest ROM. Instead, an ac-
curate ROM is desired that yields a significant speed-up
against the FOM computation.

The ROM performance results are summarized in Tab. 1
for the standardised submodels. The standardised mod-
els are investigated for different modal densities by ad-
justing the model properties like the plate thickness or
the dimension of the fluid. For all models a frequency
range from 50 − 250 Hz with two expansion points at
100 Hz and 200Hz is considered.

Table 1: ROM performance summary

Model Modes Moments ROM
FOM size Speed-up

Plate a 17 20 42 / 3975 30

Plate b 35 36 74 / 3975 18

Fluid a 19 14 30 / 6669 53

Fluid b 30 21 44 / 10881 45

FSI a 36 36 74 / 56975 98

FSI b 75 57 116 / 88775 97

At first it can be noticed, that an increasing modal den-
sity in the submodels, requires more moments to match
and therefore leads to a larger ROM. Furthermore, the
coupled model requires approximately the sum of the mo-
ments of the corresponding subsystems for an accurate
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ROM. For all models the ROM size is at least two orders
smaller than the FOM and the ROM size just increases
linearly with the number of moments matched.

The speed-up value decreases for models with higher
modal density, since the ROM size increases. Compar-
isons between the models show, that the plate models
deliver the lowest speed-up values, while the FSI models
yield the largest speed-up values. This is mainly related
to the fact, that the FOM FSI problem is much more
complex to solve for the direct solver, due to the higher
bandwidth resulting from the coupling blocks.

Testing the KMOR method for the elementary submodels
demonstrates the applicability for strongly coupled FSI
models. However, applying the method to the generic
aircraft model leads to a large ROM and therefore low
speed-up values. The problem is the comparable high
modal density, resulting from coupling modes of the four
different domains and the requirement of the ROM to
deliver an accurate ROM in all four domains. However,
in some cases, only a small part of the domain is impor-
tant, e.g. the sound pressure level at the passengers ear
position. Under this condition, a two-side method can be
applied, by additionally defining the output map c, that
specifies the relevant output nodes. Thus, an accurate
ROM is only constructed locally at a specified point.

In Fig. 4, this local approximation property is shown by
displaying the maximum relative error in the whole fre-
quency domain for the different subdomains and for the
locally defined point in the fluid domain.
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Figure 4: ROM error investigation for a two-side method of
the generic aircraft model

As expected, the ROM converges only locally for the
specified node in the fluid domain. This result is very
promising, since it enables to reduce complex models by
simply focusing on the relevant output nodes.

Conclusion and outlook
In this paper the applicability of KMOR methods for
aircraft cabin noise investigations is systematically anal-
ysed. It is shown that KMOR methods deliver accurate
and small ROMs for all generic models, i.e. the coupled

FSI model and its submodels. Depending on the model,
the final ROM size is decreased by factors of 102 to 103.
This significant reduction of the problem size results in a
very fast evaluation of the FRF, which is required for the
acoustical design process. Application of the method to
a generic aircraft model underlines, that two side meth-
ods are necessary to obtain small ROMs. These methods
reduce the error at specified output nodes only and yield
a local convergence property.

Furthermore, a correlation of the ROM size and the
modal density of the models is shown. A higher modal
density requires a larger projection space to obtain an ac-
curate ROM. This observation is a promising approach
to select the location of expansion points.

A big advantage of KMOR compared to standard MOR
methods, like modal analysis, is the availability of er-
ror indicators. Based on these error indicators accurate
ROMs can be constructed without computing the FOM
reference solution, see [7].

Furthermore KMOR methods are extendible to so called
parametrised MOR methods, which yield a valid ROM
for variations in a multi-dimensional parameter space.
In a first attempt the algorithm presented in [5] is ap-
plied to simple plate models. Handling high-dimensional
parametric MOR problems and avoiding the curse of di-
mensionality, will be the scope of future research.
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