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Introduction

Emotion recognition in far-field speech is challenging due
to various acoustic factors. So far, conducted analyses
have revealed that emotion recognition performances in
far-field conditions drop due to several environmental fac-
tors, including background noise, echo, reverberation and
other [1, 2, 3, 4]. Room modes, also known as acoustical
resonances, represent a previously neglected factor. They
lead to nonuniform sound pressure levels depending on
position and frequency. Small rooms (e.g. bathrooms,
cars) have their fundamental resonances in the range of
speech. These impact both the speech signal and the
low-level descriptors (LLDs) used in various feature sets
for speech emotion recognition [5].

This work analyses the effects of low-frequency room
modes as an environmental factor on the recognition
of emotionally coloured speech in a real recording envi-
ronment. We measured a room impulse response (RIR)
of an acoustically damped speaker cabin and a RIR of
an absorber hall. Due to the absorber panels in the
cabin, all environmental factors except room modes in
the range of speech were suppressed, whereas the hall
represented free-field conditions and room modes outside
of the range of speech. Additionally, artificial alterations
based on the measured RIRs were computed. This was
aimed to shorten the decay time while maintaining the
low-frequency magnitude response of the originals.

The analyses were based on the benchmark dataset Berlin
Database of emotional Speech (EMO-DB). Degradation
due to the rooms was applied to the complete data set.
The recorded data was convolved with both the original
and altered RIRs of the cabin and the hall. The LLDs
were extracted for the different variants and compared
with the original EMO-DB. The influence of the measured
and artificial RIRs was discussed. To furthermore draw a
conclusion regarding the influence on an emotion recog-
nition system, we have conducted identical cross-variant
classification experiments for both measured and altered
RIRs. The room modes’ impact can be attributed to
up to 6 % loss in F1-measure. The altered RIRs lead to
better feature and recognition performances.

Experimental Setup

In the following, the experimental setup is described. This
includes the introduction of the used benchmark dataset of
emotional coloured speech, the utilized measuring equip-
ment, and the investigated rooms.

Figure 1: Photos of the used recording setup: Speaker cabin
(left) Absorber hall (right).

Emotional Speech Data: The Berlin Database of emo-
tional Speech (EMO-DB) [6] was utilized to guarantee
high-quality recordings and enable a valid ground truth.
EMO-DB consists of German utterances with neutral se-
mantic content, uttered by five female and five male pro-
fessional actors in seven basic emotions (anger, boredom,
disgust, fear, joy, neutral, and sadness). The samples
were originally recorded in an anechoic chamber using a
Sennheiser MKH 40-P48 microphone at 48 kHz sampling
frequency, and later down-sampled to 16 kHz. As shown
in a figure in [6], the actors stood during the recordings.
The microphone distance was about 30cm. In a perception
test, conducted by the corpus creators, all samples below
60% naturalness and 80% emotion recognisability were
discarded, resulting in 494 phrases. Unfortunately, due to
the removal of several recordings, the gained distribution
of emotional samples was unbalanced.

Measuring Equipment: In order to measure the RIR, a
hardware setup characterized by a highly linear frequency
response was used: a Behringer ECM8000 ultra-linear
condenser microphone with an omnidirectional pattern, a
Yamaha 01V96i audio interface and a Neumann KH120A
loudspeaker. The RIR and the resulting amplitude re-
sponse was then determined through CARMA Version 4.0,
a room acoustics analysis program, utilizing an exponen-
tial sinusoidal sweep signal in 44.1 kHz as the measuring
stimulus.

Investigated Rooms: To analyse the influence of stand-
ing waves, two rooms representing the extreme conditions
regarding standing waves were selected. First, an acous-
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tically damped speaker cabin representing a small room
where all other factors except the low-frequency room
modes are suppressed, and second, an absorber hall repre-
senting free-field conditions and thus not having isolated
room modes in the frequency range of speech, see Fig. 1.
The dimensions of the speaker cabin were 2.22 m × 2.22
m × 2.44 m (length × width × height), and the ones of
the absorber hall were 21 m × 13 m × 9 m (length ×
width × height). Based on the dimensions of the room
and the placement of the microphone and speaker, the
lowest longitudinal room mode frequencies in the speaker
cabin were expected to be 76.6 Hz (fundamental mode of
the width and length dimension) and 139.3 Hz (second-
order mode of the height dimension). In the absorber hall,
the fundamental longitudinal modes’ frequencies were ex-
pected to be 8.1 Hz (length), 13.1 Hz (width) and 18.9
Hz (height), respectively.

Methods

We used the following two methods in order to obtain
speech data degraded by the rooms:

i) Each EMO-DB utterance was convolved with the
RIRs of the speaker cabin (“Cabin”) and the absorber
hall (“Hall”), measured with the same measuring
equipment, see Section “Experimental Setup”. The
convolution was based on Matlab.

ii) To attain minimum phase (MP) conditions, EMO-
DB was convolved with artificial alterations of the
measured RIRs of the speaker cabin (“Cabin MP”)
and the absorber hall (“Hall MP”). The alterations
featured shorter decay time, identical low-frequency
spectrum and minimum phase characteristics (see
next section).

The resulting variants of EMO-DB are given in Table 1.

Calculation of artificial Minimum Phase RIR: In
order to disentangle the influence of temporal and spec-
tral effects, an artificial RIR was created based on the
measured RIR of the speaker cabin and absorber hall,
respectively. To maintain the low-frequency magnitude
response of the original, but with a faster temporal decay,
the following changes were made: i) the higher-frequency
part of the spectrum was set to unity in the frequency
space to suppress comb filtering, and ii) the RIR was
converted to minimum phase by an operation in cepstral
space.

Low Level Descriptor Extraction: For each variant
of EMO-DB, 26 LLDs were extracted, applying the openS-
MILE toolkit [7]. We utilised the emobase configuration,
defining 25 ms frame-level for the windowing of the speech
utterance. This configuration contains LLDs belonging to
loudness-, cepstral-, LPC-, waveform- and pitch-related
feature groups.

Correlation of LLDs: The utterances of the clean
EMO-DB were compared with the identical time-aligned
utterances of the artificial ones. As both utterances origi-
nated from the same speaker, we would assume a linear
association between them and consequently between their
LLDs. The extracted LLDs are not normally distributed.

Table 1: Overview of generated EMO-DB variants.

Identifier Description

EMO-DB Original EMO-DB

Speaker Cabin’s RIR convolved with EMO-DB:

Cabin Measured RIR of speaker cabin
Cabin MP Artificial alteration (smoothed and minimum

phase)

Absorber hall’s RIR convolved with EMO-DB:

Hall Measured RIR of absorber hall
Hall MP Artificial alteration (smoothed and minimum

phase)

So, we used the Spearman rank correlation coefficient rs,
as it does not require the assumption of normality.

We used the Spearman rank correlation coefficient rs,
as it does not require the assumption of normality. In
Matlab, rs was obtained by ranking the values of two
LLDs, and calculating the Pearson correlation coefficient
and the population value, on the resulting ranks [8]. For
our analysis, we considered only correlation coefficients,
which differed significantly from rs = 0 at a Bonferroni-
corrected 5 % significance level.

Emotion Recognition Experiments: Finally, state-
of-the-art automatic recognition experiments comparable
to [9] were conducted. To check how well our learned
models generalize to testing data, we opted for a Leave-
One-Speaker-Out validation scheme. Furthermore, the
training was conducted on the original EMO-DB, while
for the test, we used different variants (cross-variant ex-
periments), given in Table 1.

The feature extraction relied on the same feature set as
the correlation experiments with the only difference to
using the functionals instead of the LLDs, resulting in 988
features characterizing the super-segmental distribution
per utterance. Afterwards, normalisation (standardiza-
tion) was used to eliminate differences between the data
samples [10]. As a recognition system, SVMs with linear
kernel and a cost factor of 1 were utilized with WEKA
[11]. As a performance measure, the F-measure (F1) was
calculated as the average over the single speakers.

Results

In the following, the results for the different analyses are
presented. First, measured and artificial RIRs are pre-
sented. Afterwards, the correlation between the original
EMO-DB and the generated variants is calculated, based
on the extracted LLDs. Finally, the impact on emotion
recognition is shown.

Analysis of Room Impulse Responses: Figure 2
shows measured impulse responses of the speaker cabin
(measured data in grey colour). The original RIR’s spec-
tral representation of the speaker cabin in Figure 2b)
features substantial variations of magnitude in the low-
frequency region due to the room modes in that frequency
region, whereas the RIR in Figure 2d), measured in the
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Figure 2: Original (grey) and altered (purple) versions of the speaker cabin (subfigures a), b)) and absorber hall (subfigures
c), d)) RIR in a temporal and spectral representation. The yellow lines in subfigure b) indicate the expected frequency of the
fundamental and second order room mode of the length and width dimension. The green lines indicate the expected frequency of
the second and third-order room modes of the height dimension.

absorber hall, shows a much more uniform response in
that frequency region. In the temporal representation, it
is visible that the early parts of the RIRs of the speaker
cabin in Figure 2a) and the absorber hall Figure 2c) are
very similar because this part is determined by the trans-
fer characteristics of the recording equipment. However,
the first echo of the speaker cabin is visible around the
5 ms mark in the plot, whereas the first echo of the RIR
absorber hall is much later than that, which is not shown
here. Note that the impulse responses are considerably
longer than the part shown in the plot and that the
“MP” conditions (purple lines) are not zero outside of
the shown range, as it might seem from the plots. The
higher-frequency parts of the “MP” conditions’ (purple
lines) spectra are smoothed, so that the comb filtering in
that range is eliminated.

Analysis of RIR’s Influence on Emotion Features:

Figure 3: Notched boxplots show the distribution of Spear-
man’s rs for each experimental condition.

97 % of the correlation coefficients in the “Cabin”, 97.5 %
in the “Cabin MP”, 96.5 % in the “Hall” and 97.2 % in
the “Hall MP” condition differ significantly from rs = 0
at the Bonferroni-corrected 5 % significance level, which
means that these are significantly correlated with the clean
LLDs, positively or negatively. Applying the boxplots
in Figure 3, we can compare the range and distribution
of the Spearman’s correlation coefficients of all experi-
mental conditions. The boxes indicate the median and

Figure 4: Median and standard deviation of Spearman’s rs
per feature group and per experimental condition.

interquartile range. The length of the whiskers indicates
the highest/ lowest value inside 1.5 times the interquartile
range. The ’+’ indicates a value lying outside that range
(outlier).

We observe that the coefficients vary similarly across all
experimental conditions. Moreover, we observe a right-
skewed distribution across all conditions, which means
it has a few relatively low correlation coefficients. As
the notches in the boxplots do not overlap, we conclude
that the medians differ significantly on a 5 % level. The
“Cabin”’s and “Cabin MP”’s medians are slightly higher
than the “Hall” and “Hall MP” ones. Across all condi-
tions, the “Cabin” condition shows a few more massive
outliers.

Using the median and standard deviation of the corre-
lation coefficients per feature group, we can compare
feature-specific statistics in Figure 4. All medians de-
viate similarly in the range of 0.11 to 0.16. The fea-
ture group-related medians, except the cepstral-related
ones, are similar in the particular experimental condition
but differ across all conditions. The loudness-, LPC-,
waveform-, and pitch-related medians provide a large gra-
dient across the “Cabin” (or “Hall”) and “Cabin MP” (or
“Hall MP”) condition, compared to the cepstral-related
medians across the mentioned conditions. We conclude
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that the “MP” condition affects cepstral features less
than the other emobase features. Regarding only both
“MP” conditions, the feature-related medians are similar,
in contrast to the ones across the “Cabin” and “Hall”
condition.

Analysis of RIR’s Influence on Emotion Recogni-
tion: Table 2 depicts the results for the different cross-
variant experiments. Interestingly the recognition results
within the speaker cabin are significantly better than the
corresponding results within the absorber hall (“Hall MP”:
F=12.3050, p=0.0025 and original F=37.8488, p=0.0000).
In comparison to the clean EMO-DB, all recognition re-
sults are significantly decreased (p<0.0000).

Table 2: Emotion recognition performance (F1 score) per
experimental condition. The baseline recognition performance
(training/ test on EMO-DB) is also given.

Experimental condition F1 (std) [%]

EMO-DB (Baseline) 78.18 (0.631)
“Cabin” 73.63 (0.104)
“Cabin MP” 75.69 (0.789)
“Hall” 72.02 (0.821)
“Hall MP” 74.57 (0.630)

Discussion

The results of our feature analysis go along with the
emotion recognition results regarding all experimental
conditions. We obtain the best feature and recognition
performance results in the “MP” condition, where tem-
poral effects of the room acoustics were suspended. The
room acoustics analysed in this work have an impact on
the emotion recognition performance up to ∆F1 = 6%.
EMO-DB in the “Cabin” condition provides a few more
massive outliers than in the other conditions. We suppose
that this is due to the cabin’s room modes, which distort
EMO-DB, especially in the low-frequency range.

Assuming that the “MP” versions of the RIRs contained
the spectral properties of the investigated rooms mainly,
and the measured RIRs contained spectral as well as
temporal properties such as delay and reverberation, we
conclude that both aspects play a role in emotion recog-
nition. For the two rooms, that were investigated in this
study, both the spectral and temporal properties caused a
nearly equally strong impairment of emotion recognition.
To what extent these results also apply for living rooms
or office rooms is not clear. Possibly, due to the typi-
cally longer reverberation times in these rooms, temporal
effects might be more dominant.

So far, we cannot explain why the feature and recognition
performance in the “Hall” condition is worse than in the
“Cabin” condition. We have not identified any significant
mismatch in the measuring of the RIR or generating the
artificial EMO-DB data for training and testing. However,
we will focus it on further investigations.
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