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Introduction 

Tire non-uniformities give rise to the force variations at the 

spindle during the steady-state rotation. The higher-order 

harmonics of the axial forces caused by the tire uniformity 

subsequently induce the noise within passenger cars. 

Considering the complicated production process of tires, it is 

inevitable to cause uncertainties in tire structures. The 

defects of tires, such as the unbalanced mass distribution and 

the uneven radial run-out will result in the variation of the 

dynamic response of tires. 

The non-uniformity of tires has been reported in several 

published studies to be the major causes of the riding 

discomfort [1-2]. Walker and Reeves have discussed the 

mechanism of the deviation of the axial forces based on the 

experimental results [3]. Based on the assumption of the 

rigid ring, Stutts et al. have explained the phenomenon that 

the horizontal force increases faster than the vertical forces 

as the speed increases [4]. The influences of the lamped 

stiffness of the sidewall have been studied subsequently [5].  

Dillinger et al. have combined some published models of 

tires and analyzed the tangential and radial hub forces [6]. 

Pottinger has summarized the methods to improve the 

response of the installed non-uniform tire-wheel assemblies. 

[7]. However, most of the researches have focused on the 

explanation of experimental results [3-4, 7]. Some existing 

models which have applied the assumption of the rigid ring 

are too simple to describe the tire deformation and the 

behaviors in the tire-road contact area [4-6]. Therefore, the 

purpose of this paper is to develop a model for predicting the 

force transmissibility of tires caused by the non-uniformity, 

including the mass unbalance and the radial run-out. The 

model is established based on a flexible-rigid ring model. 

The impacts of these two kinds of non-uniformities are 

analyzed at different speeds.  

Ring Model of Tire 

A method of transforming a pneumatic tire into a ring model 

has been widely used in the analysis of vehicle dynamics. To 

analyze the in-plane dynamic response of tires, a tire was 

modeled as a two-dimensional deformable ring in this paper. 

It means that only the motions in the plane of the wheel were 

considered [8-9]. 

2D Ring Model 

Herein, the steel belt is treated as a 2D elastic ring. It is 

assumed as an Euler-Bernoulli beam which can bend in the 

plane of the wheel. The sidewall is equivalent to an elastic 

foundation with damping, and the rim is rigid. Figure 1 

shows the method of transforming a tire into a 2D 

deformable ring with a rectangular cross-section on an 

elastic foundation. The location of any point on the tire can 

be described by cylindrical coordinates in the non-rotating 

coordinate system (r, θ), or the rotating coordinate system (r, 

ϕ). The uniform pressure was applied to the inner wall. The 

elastic properties of the elastic foundation are modeled 

respectively by distributed springs in the radial and 

circumferential directions (ku, kv). Damping existing in the 

foundation can be described by introducing the coefficients 

(cu, cv) into this model. 

 

Figure 1: Schematic of the two-dimensional ring model of 

tires. 

 

The radial and circumferential displacements (u, v) are 

applied to describe the motion of the ring, which can be 

expressed by the mid-plane displacements (ub, vb). The tread 

band is assumed to behave as an inextensible curved beam. 

Therefore, the radial displacement u and the tangential 

displacement v at any point on the middle surface of the 

inextensible ring are related by 

b bu v   (1) 

The equation of motion of the ring expressed in terms of vb 

is given in [8]. The response of the tangential displacement 

of the ring is expressed in terms of a modal expansion. The 

motion in the generalized coordinates an(t), bn(t) reduces to a 

set of linear second-order ordinary differential equations 
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The elements in the matrices are as follows 
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where 
0

 is the initial stress in the tread band due to the 

action of the centrifugal force and inflation pressure p0. With 

DAGA 2020 Hannover

352



the case of concentrated line forces and moment (qu, qv, qβ) 

acting on the tread, the steady-state response is obtained 

using the undetermined coefficient method, 
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where Qu, Qv, and Qβ, are the magnitudes of radial and 

tangential forces and the moment acting at specified point ϕ0 

in the non-rotating coordinates. If the ring is discretized, the 

overall displacement of the tread band can be obtained by 

the superposition of the response at each point. The 

tangential displacement and the corresponding radial 

displacement of the tread band are given by 
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Equation (5) also can be transformed into a matrix form, 

U = TQ , (7) 

where U is the displacements of tire body, T is the flexibility 

matrix, Q is the matrix of generalized forces. Once the 

forces and moment (qu, qv, qβ) acting on the tread band are 

given, the tire tread band displacements (ub, vb) can be 

obtained from equation (7).  

Contact Forces 

The displacements of the tire body cannot be calculated in 

advance, because the tire body is not directly in contact with 

the road surface. The displacements of the tire body and the 

tread rubber should be satisfied with the geometry 

compatible conditions [10]. The rotation angle β of the tread 

band cross-section is 

b bv u

R



 . (8) 

Under a given overall deformation, the normal and 

tangential deformations of the tread rubber (us, vs), and The 

declination 𝜂 and the rotation angle β of the tread band 

cross-section at any given position ϕ are expressed as 
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The forces acting on the rubber surface can be calculated as 
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The generalized forces and the tractions are obtained by 

using the coordination transformation, 
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Assuming the displacements of the tire body are small. 

Substituting the equations (9-10) into the equation (11) and 

transforming to the matrix form, the linearized boundary 

equation is, 

Q = F + HU , (13) 

where F is the matrix of generalized forces corresponding to 

the tread rubber deformation. The exact contact forces are 

obtained by successive substitution which is treated as the 

input of the rigid ring to calculate the transient responses. 

Flexible-rigid Coupling Ring 

Solving the partial differential equations of the tire motion 

considering the large-deformation and the rotation will make 

the dynamic model too complex to solve. Therefore, the 

transient response can be approximated using an assumption 

of the rigid ring to describe the first modes of the tire body 

(<100Hz). The rigid ring can represent the inertia of the 

tread and a part of the sidewall. The rigid ring is connected 

to the rim by a three degrees-of-freedom spring element. To 

calculate the transient response, the contact forces generated 

by the flexible ring are treated as the input excitation on the 

rigid ring. Then the position will be frozen to calculate the 

local deformation and the next-step contact forces. 

 

Figure 2: Combination of the flexible ring and the rigid 

ring. 

 

Non-uniformity Parameters 

In this paper, two kinds of non-uniformities of the tire are 

considered, including the lumped mass unbalance and the 

geometrical radial run-out. These non-uniformities not only 

affect the parameter matrixes in the flexible ring model but 

also influence the contact forces and the dynamic response. 

The concentrated mass unbalance is described in the 

equations of motion of the rigid ring. It causes the additional 

generalized forces in the system. The effects were discussed 

in the section of the simulation results. 
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Model Parameter 

To demonstrate the validity of this proposed model, a 

practical tire structure was modeled in this paper. As in the 

case study, the proposed ring model is applied to the non-

uniformity analysis of a 205/55R16 radial tire. Some 

engineering design parameters are listed in Table 1. 

Table 1: Geometrical parameters of a 205/55R16 tire 

Parameter type Unit Value 

Ring width b m 0.172 

Ring thickness h m 0.018 

Effective density  kg/m3 1.6103 

Mean radius R m 0.32 

Inflation pressure p0 Pa 2.4105 

 

The parameters of the flexible ring model including the 

geometric and physical parameters are identified from the 

results of the finite element model. The parameters of the 

rigid ring and the stiffness parameters of the 3-DOF spring 

are obtained by using the results of the first-order natural 

frequencies. Those parameters also can be obtained from 

cleat tests or static stiffness experiments [11]. 

Table 2: Physical parameters of the flexible ring 

Parameter type Unit Value 

In-plane bending stiffness EI N m2 2.0 

Radial distributed springs of 

sidewall ku 
N/m2 6.3105 

Circumferential distributed 

springs of sidewall kv 
N/m2 1.89105 

Tread band thickness h0 m 0.0125 

Tread normal stiffness kEs N/m 3.3105 

Tread tangential stiffness kGs N/m 3.93105 

 

Table 3: Physical parameters of the rigid ring 

Parameter type Unit Value 

Mass of the rigid ring kg 6.9 

Horizontal stiffness of the spring N/m 1.7106 

Vertical stiffness of the spring N/m 1.04106 

Torsional stiffness of the spring N/rad 2.72103 

Simulation Results 

Contact Pressure Distribution 

The results of the contact force distribution under five 

different vertical load conditions are shown in Fig. 3. At the 

center part of the contact patch, the concave distribution 

under a higher vertical load illustrates a trend of buckling. 

 
Figure 3: Results of the contact force distribution. 

Responses Caused by Radial Run-out 

A set of test data of the radial run-out at the center point 

(RRoc) on the outer surface of the tire is given. To simulate 

the experimental conditions, the height of the spindle is fixed. 

Without the mass unbalance, the radial force deviation per 

revolution is given in Figure 4.  

 

(a) Radial run-out test data at the center point of the tire 

 

(b) Radial force deviation per revolution 

Figure 4: Radial force of the tire caused by the radial run-

out of at the center point on the outer tread band surface. 

 

Responses Caused by Mass Unbalance 

As the rolling speed of the tire increases, the horizontal force 

increases faster than the vertical force [3]. In this case study, 

the effects on the force deviation caused by a concentrated 

unbalanced mass on the tread ma were analyzed. Assume that 

it is possible to place a counterbalancing mass mc at the rim 

which satisfies the condition,
a e c cm R m R , where Rc is the 

radius of the rim.  

 

Figure 5: Deviation of the vertical and horizontal forces of 

the unbalanced and counterbalanced systems. 

 

Figure 5 shows the results of the unbalanced and 

counterbalanced systems where the unbalanced mass 

15am  g was selected. It is found that the horizontal force is 
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larger. The effect of the mass unbalance cannot be 

completed omitted by the counterbalanced mass on the rim, 

and the resonance of the rim is observed in the responses of 

the balanced horizontal force. 

   
Figure 6: Diagram of the vertical and horizontal forces at 

the rolling speed of 80 km/h and 120 km/h. 

 

For the unbalanced and counterbalanced systems, the 

diagram of the vertical and horizontal forces at the rolling 

speed of 80 km/h and 120 km/h are given in Fig. 6. The 

horizontal force dominates at different rolling speeds. 

Dynamic Simulation 

To investigate the impacts of the run-out and the mass 

unbalance on the responses, the practical RRoc is simplified 

as a trigonometric function,  cosey Y t    , where δ 

represents the location of the maximum amplitude of the 

run-out relative to the rotating frame. Here the amplitude Ye 

equals to 0.2mm and δ is chosen as 0.  

 

Figure 7: Schematic of the three-dimensional ring model. 

 

At low rolling speed, the vertical force is larger, but at high 

rolling speed, the horizontal force dominates as shown in 

Fig.7. It means that even if the low-speed test results of tires 

meet the production requirements, the force deviations 

caused by the mass unbalance will be significant at high 

speed, especially in the horizontal direction. 

Conclusion 

In this paper, a multi-body model for analyzing the 

characteristics of the force transmissibility of a non-uniform 

tire was proposed. Tire non-uniformities give rise to rolling 

force variation on the spindle during steady-state rolling. 

The impacts of the mass unbalance and the radial run-out 

were investigated by the proposed flexible-rigid ring model 

which was established based on a three-dimensional ring on 

an elastic foundation model. Considering the geometric non-

uniformity of the tire, the variations of the vertical force in 

the tire-road contacting area were given. The horizontal and 

vertical forces caused by the mass unbalance and the radial 

run-out were calculated. It shows that the effect of the mass 

unbalance cannot be completed omitted by the 

counterbalanced mass on the rim, and the resonance of the 

rim will be involved in the force responses. By simplifying 

the radial run-out as a trigonometric function, it is observed 

that as the horizontal force deviations caused by the mass 

unbalance dominates at high speed. 
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