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Introduction
Frequency-Independent (FI) beamforming is a technique
used to obtain signals with a wide range of frequencies.
It maintains signal integrity and spatial selectivity over
frequencies. This is important for audio signals where
the bandwidth of signals is several octaves. The design
methodology for a Dense and Uniform Array (DUA) with
FI beamforming is known [1]. If one has a good design
for a DUA with FI beam pattern, one might be able to
remove unimportant microphones in the DUA to obtain
a Sparse Array (SA). Most studies focus on optimization
methods [2, 5, 6] to determine the position of important
microphones, but they do not use the information from
the DUA. In some circumstances, it is not only difficult
to set up the optimization with good parameters, but it
is also difficult to solve the optimization with subject to
sparse solutions. In this paper, a method is provided to
design a SA that takes information from a DUA as com-
putational input (Figure 1).

Figure 1: Flowchart for Sparse Array design.
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First, the Coordinate Transformation (CT) method in
[1] is used to design a DUA with FI beam pattern. The
microphone gains (weights of spatial filter) of the DUA
on different frequencies, which are achieved by CT, con-
stitute a weight matrix. Principal Component Analysis

(PCA) [3] is applied to reduce the size of the weight ma-
trix because this matrix does not have a full-rank. After
compressing the weight matrix, we find the rows with su-
perior energy in the compressed matrix corresponding to
the critical microphones that need to be kept in the SA.
Next, we apply K-mean clustering algorithm to catego-
rize the remaining microphones in the DUA into different
groups [2]. For each group, microphones closest to the its
centroid are taken as the group’s representative. The rep-
resentative microphones are added to the SA. The num-
ber of microphones in the SA is relative to the number
of groups. Moreover, as the number of groups increases,
the total distance from the points to the centroid points
decreases. This decrease is correlated with the feasibility
of optimization in the next step. Once the positions of
the microphones in the SA are identified, optimization
problems need to be solved to find the microphone gains
at every frequency.

Signal Model
In the far-field signal, the wave is planar. The plane of
array consolidates with x-y plane in the Cartesian coordi-
nate. Beam pattern in an interested bandwidth, ∀ω ∈ Ω:

b(φ, θ, ω) = wH(ω)d(φ, θ, ω)

where the superscript H denotes the conjugates-
transpose operator, w(ω) is a weight vector that contains
the complex value of the spatial filter at a frequency ω
and d(φ, θ, ω) is a steering vector at direction defined by
azimuth and elevation angle (φ, θ).
From M microphones with equidistance dH in the DUA,
we select a set sK contains K(K << M) microphones
with indices, ik ∈ [1, ..,M ], k = 1, ...,K.
Beam pattern at ω is formed by the microphones in the
set sK :

bS(φ, θ, ω) = wHS (ω)d(φ, θ, ω)

Where wS , has K non-zero elements and M − K zero
elements, is M × 1 weight vector of the SA.
Suppose a reference beam pattern is given, then it is
possible to design a DUA with M sensors, equidistance
dH and weight vector w(ω) by the CT method [1] to
assure that b(φ, θ,Ω) is almost independent of Ω.
In this paper, a method to find the set of active sensors in
a DUA sK = [i1, i2, ..., iK ] is presented so that bS(φ, θ,Ω)
is close with b(φ, θ,Ω).

Design Method for Sparse Array
In recent studies, optimization methods are used to seek
sK and wS either together [5] or separately [2]. The set-
up of optimization problems normally does not have a
general rule for using the characteristics of the reference
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beam pattern, which indeed decide the possibility of the
sparseness of an array. With this concern in mind, a
three-step method is proposed to design a SA: Analy-
sis, Selecting and Optimization. This method finds sK
and wS separately. However, in the Analysis step, the
optimizations is not used to find microphones’ positions,
instead a DUA is designed and analyzed. In the Select-
ing step, the weight matrix of the DUA is used as a ba-
sis to select a set sK . Finally, in the last step, we use
optimization method to find the weight vector ωS . The
optimization efforts to find the weight vector is negligible
compared with that to find sparse solutions.

Analysis
Let’s design a DUA with FI beam pattern ∀ω ∈ Ω. We
reuse the design constraints of uniform array from [1] to
find parameters for a DUA: N, dH .{

2πc
NdH

≤ ω ≤ πc(N−2)
2NdH

, N is even
2πc
NdH

≤ ω ≤ πc(N−1)
2NdH

, N is odd
(1)

Where c is sound speed, N is the number of microphones
in one axis (vertical or horizontal) of planar array. Ap-
plying the CT method for every ωj ∈ Ω [1]:

• Step 1: define a reference beam pattern bref (φ, θ).

• Step 2: with radius R =
ωjNdH

2πc , presenting the ref-
erence beam pattern to a gain function bR(φ, θ) in
the Spherical coordinate.

• Step 3: the gain function in the Cartesian coordinate
bωj (u, v) is achieved by transforming bR(φ, θ) in the
Spherical coordinate to the Cartesian coordinate.

• Step 4: apply Inverse Fourier Transform of bωj (u, v)
to achieve w(ωj).

After J iteratives for J frequencies in Ω, a weight matrix
is obtained:

WA = [w(ω1), w(ω2), ..., w(ωJ)]

The weight matrix achieves from this step could help

Figure 2: The weight matrix spectrum of a DUA.

us to analyze the possibility of reducing the number of
microphones. Figure 2 presents a weight spectrum WA

of a DUA: consists of 101 × 101 microphones which are
rearranged into vertical of the matrix. If there are a few
rows in the weight matrix having energy that dominates
the other rows, the reference beam pattern has a high
potential to reduce a lot of microphones in the DUA.
If the energy spectrum of WA spreads out over the row
and column, there is less chance to reduce the number of
microphones in the DUA. Therefore, using optimization

methods in this step may be inefficient in general because
we do not know the good parameters for optimizations
without analyzing the weight matrix of the DUA.

Selecting
Before choosing important microphones, we could apply
the dimensional reduction algorithm for the weight ma-
trix to save the computation time of the selecting algo-
rithm. If WA is a rank-deficient matrix with decaying
singular-values, using PCA is a good option for dimen-
sional reduction in terms of keeping the essential infor-
mation.
The input of PCA algorithm is the weight matrix WA of
size M×J . Let matrix WA be the central version of WA:

WA(:, j) = WA(:, j)−mean(WA(:, j)),∀j ∈ J

Where mean(v) is the mean value of vector v.
The output of PCA algorithm is a dimensional reduction
matrix:

WR = WAU

Where U , is a matrix with size J ×L, contains L eingen-
vectors corresponding to L largest eigenvalues, L << J .
The column dimension L of the matrix U is a set accord-
ing to the following criteria: ith(i ≤ L) first eigenvalues
of RA = WH

A WA in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λL
are selected which satisfy [2]:0.6 < α < 1.

α =

∑L
j=1 λj∑J
j=1 λj

Dimensional reduction of weight matrix WR is showed in

Figure 3: Dimensional reduction of weigh spectrum.

Figure 3. The compressed matrix needs to be analyzed in
order to find the critical microphones. The selecting pro-
cess follows 2 criteria: energy contribution in the weight
spectrum and well-support for Optimization step.
Let sK1

be a subset containing indices of K1 microphones
in the DUA which have the strongest energy span over
row of WR. Subset sK1 contains the microphones in the
DUA excluding microphones in sK1

.
Let a spanning energy for a microphone be a sum of that
microphone’s energy over frequencies,

εi = ‖WR(i, :)‖22 , i = 1, ...,M

εmax = max(εi), i = 1, ...,M

The set of microphones having spanning energy is greater
than a threshold,

sK1
= find index(εi > βεmax), i = 1, ...,M.

Remaining microphones,

sK1
= find index(εi ≤ βεmax), i = 1, ...,M.
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Where 0 < β < 1 is an arbitration energy factor for
the SA. If β is close to 0, then SA is close to DUA. It
means more microphones from the DUA are taken. If
β is close to 1, the SA only takes a few most important
microphones from the DUA.
From subset sK1 , we apply a clustering algorithm over
the rows of WR(sK1 , :) to categorize microphones in sK1

into K2 groups. Each group contains the microphones
having similar characteristics (similar pattern of energy
distribution over frequencies). K-means clustering algo-
rithm [7] is used to minimize the within-cluster sums
of point-to-centroid distances. The sums of point-to-
centroid distances could present the gap between the SA
and the DUA in terms of FI beam pattern. However,
mathematical formula of the relation between the sums
of point-to-centroid distances and the distortions of FI
beamforming in the SA is not covered in this paper.
K-means algorithm is used to divide (M − K1) micro-
phones into K2 groups. The bigger K2 is relative to the
smaller sum of distances to centroids, which means the
difference between the beam pattern of SA and the beam
pattern of DUA is smaller. Next, for every group, one
or several representative microphones which are closest
to the centroid of its group are chosen to constitute the
subset sK2

.
Finally, the set sK is the union of subset sK1

and subset
sK2

,
sK = sK1

∪ sK2

Optimization
We uniform discretized angle spaces and introduce P di-
rections ρi = (φi, θi) ∈ Θ that cover the entire direction
of the beam pattern. We select U out of P directions
that cover the main-lobe region Θm, and let Km

i be a set
containing these directions at a single frequency ωi,

Km
i = {(ρ1, ωi), (ρ2, ωi), ..., (ρU , ωi)}

Where superscript m stands for main-lobe. Similarly,
we define Ks

i containing P −U directions that cover the
side-lobe region Θs,

Ks
i = {(ρU+1, ωi), (ρU+2, ωi), ..., (ρP , ωi)}

Where superscript s stands for side-lobe. We define
Steering Matrix over angle spaces,

DΘ(Θ, ωi) = [d(ρ1, ωi), d(ρ2, ωi), ..., d(ρP , ωi)]

Reference beam pattern for main-lobe region Θm: bmd
Reference beam pattern for side-lobe region Θs: b

s
d

Main-lode constraints:

C1 :
∥∥bmd − wHS (ωi)DΘ(Km

i )
∥∥

2
≤ ε1(ωi),∀ωi ∈ Ω.

Side-lode constraints:

C2 :
∥∥bsd − wHS (ωi)DΘ(Ks

i )
∥∥

2
≤ ε2(ωi),∀ωi ∈ Ω.

Where ε1(ωi), ε2(ωi) are positive parameters. As we
mentioned in the Analysis step, ’the sums of point-to-
centroid distances’ is correlated with ε1(ωi), ε2(ωi). The
smaller ’the sums of point-to-centroid distances’ is, the

smaller ε1(ωi), ε2(ωi) could be set.
Distortionless response constraint for looking direction
(φ0, θ0):

C3 : wHS (ωi)d(φ0, θ0, ωi) = 1,∀ωi ∈ Ω.

The optimization could find the vector wS(ωi), which
may contain the elements with a large number. In such
a scenario, the array is sensitive with the white noise.
Therefore, the WNG constraint is needed:

C4 : wHS (ωi)wS(ωi) ≤ γ(ωi),∀ωi ∈ Ω.

A reasonable choice is to minimize the white noise’s
power C4 with subject to the remaining constraints
C1, C2, C3 [2].

minimize
wS(ωi)

: wHS (ωi)wS(ωi)

subject to∥∥bmd − wHS (ωi)DΘ(Km
i )
∥∥

2
≤ ε1(ωi)∥∥bsd − wHS (ωi)DΘ(Ks

i )
∥∥

2
≤ ε2(ωi)

wHS (ωi)d(φ0, θ0, ωi) = 1

(2)

Numerical Simulation
An example for planar microphone array are given.

Step 1:Analysis

(a) (b)

Figure 4: (a) DUA and (b) Reference beam pattern.

Define a reference beam pattern (Figure 4(b)):

b(φ, θ) =

{
| sin(απθ)

απθ |, θ > 0, α is a constant,

1, θ = 0.

From (1), we could find a configuration for the DUA:
N = 101 microphones, dH = 0.01 m, c = 340 m/s (Fig-
ure 4(a)) and the possible frequency range ( c

NdH
≤ f ≤

c(N−1)
2dHN

): 337 Hz ≤ f ≤ 16832 Hz.
The frequency range: Ω = {1Khz, . . . , 4.5Khz} is se-
lected.
Applying the CT method, we yield the weight matrix
and its dimensional reduction is presented in Figure 2
and Figure 3.

Step 2:Selecting
β = 0.75 is set then |sK1

| = 21 microphones. The re-
maining microphones in the DUA are divided into 15
groups by K-means clustering algorithm. The iteration
of K-means clustering is 500 times for this example to
find the acceptable solution. Finally, we have |sK2 | = 60
microphones (four representative microphones for each
group) and the total microphone in the SA is 81, Figure
5.

DAGA 2020 Hannover

128



Figure 5: Layout for planar arrays: sparse array (‘circle’
red), SUA (‘x’ green) and BUA (‘*’ blue).

Figure 6: (left) cross-cut of beam pattern versus fre-
quency, (right) beam pattern at 2Khz

Step 3:Optimization
Main-lobe constraint: ε1(ωi) = 0.002U, ∀ωi ∈ Ω.
Side-lobe constraint: ε2(ωi) = 0.006(P − U), ∀ωi ∈ Ω.
Where P = 180, U = 60.
The same constraints in (2) apply for SA, SUA and BUA.
The synthesized FI beam patterns versus frequencies are
presented in the left in Figure 6 and the beam pattern at
2Khz are presented in the right in Figure 6. The op-
timization of the SA always give the feasible solution
while the optimization for SUA and BUA are infeasible
for some frequencies (the blanks in the graphs in Figure
6 and Figure 7). Figure 7 depicts the WNGs versus fre-
quencies.

Figure 7: White Noise Gains over frequencies.

Note that it is possible to increase the WNG for the SA
either by increasing the number of microphones or reduc-
ing the hardness ε1(ωi), ε2(ωi) of constraints C1, C2 for FI
beam pattern.
Beam Pattern Error (BPE) indicates the difference be-
tween the real beam pattern br and the desired beam

Table 1: Beam Pattern Error average

Array
Frequency

1Khz 2Khz 4Khz

SA 0.0328 0.0305 0.0315
SUA Infeasible 0.0422 0.0331
BUA 0.0319 Infeasible Infeasible

pattern bd (the comparison of arrays’ BPEs are given in
Table 1),

BPE = |br − bd|.

Conclusion
A uniform array with near distance of microphones en-
sures FI beam pattern at high frequency but is worse at
the WNG index, while a uniform array with far distance
of microphones ensures FI beam pattern at low frequency
and is good at the WNG index. In case of wide range
frequencies, the uniform array needs to be rather dense
and large size to cover both near distance microphones
and far distance microphones, therefore the number of
microphones needs to be huge. Thus, the sparse array is
an optimal solution because it reduces the number of mi-
crophones, ensures the FI beam pattern and increases the
WNG. Our design method for the sparse arrays uses the
information from the uniform array to seek the locations
of microphones, which is efficient not only in performance
but also in computing time.
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