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Introduction
Despite the recent advance in machine learning and ge-
nerative modeling, synthesis of natural sounds by neural
networks remains a challenge. Recent solutions rely on,
among others, classic recurrent neural networks (e.g.,
SampleRNN, 1), dilated convolutions (e.g., WaveNet, 2),
and generative adversarial networks (e.g., WaveGAN,
TiFGAN, MelGAN, 3; 4; 5). Especially, the latter offers
a promising approach in terms of flexibility and quality.
Generative adversarial networks (GANs, 6) rely on two
competing neural networks trained simultaneously in a
two-player min-max game: The generator produces new
data from samples of a random variable; The discrimina-
tor attempts to distinguish between these generated and
real data. During the training, the generator’s objecti-
ve is to fool the discriminator, while the discriminator
attempts to learn to better classify real and generated
(fake) data. Since their introduction, GANs have been
improved in various ways (e.g., 7; 8). For images, GANs
have been used to great success (9; 10). For audio, GANs
enable the generation of signals at once even for duration
in the range of seconds (3; 4).

Time-frequency (TF) domain representations of sound
are successfully used in many applications and rely on
well-understood theoretical foundations. They have been
widely applied to neural networks, e.g., for solving discri-
minative tasks (11), in which they outperform networks
directly trained on the waveform (12; 13). Further, TF
representations are used to parameterize neural synthe-
sizers, e.g., Tacotron 2 (14) or Timbretron (15). Despite
the success of TF representations for sound analysis, why,
one could ask, has neural sound generation via invertible
TF representations only seen limited success?

In fact, there are neural networks generating invertible
TF representations for sound synthesis. They were desi-
gned to perform a specific task such as source separati-
on (16; 17), speech enhancement (18), or audio inpain-
ting (19; 20) and use a specific and well-chosen setup for
TF processing. While the general rules for the parameter
choice are not the main focus of those contributions, the-
se rules are highly relevant when it comes to synthesizing
sound from a set of TF coefficients generated, e.g., by a
neural network.

When both the TF representation and its parameters
are appropriately chosen, we generate a highly structu-
red, invertible representation of sound, from which time-
domain audio can be obtained using efficient, content-
independent reconstruction algorithms. In that case, we
do not need to train a problem-specific neural synthesi-
zer. Hence, in this article, we discuss important aspects

of neural generation of TF representations particularly
for sound synthesis. We focus on the short-time Fourier
transform (STFT, e.g., 21; 22), the best understood and
most widely used TF representation in the field of audio
processing. We demonstrate the applicability of neural
generation of STFT by presenting TiFGAN, a network
which generates audio using a TF representation. We pro-
vide perceptual and numerical evaluations of TiFGAN
demonstrating improved audio quality compared to a si-
milar time-domain GAN for audio synthesis. Our softwa-
re, complemented by instructive examples, is available at
http://tifgan.github.io.

Time-Frequency Generative Adversarial
Network (TiFGAN)
Here we present TiFGAN, which unconditionally gene-
rates audio using a TF representation. For the purpose
of this contribution, we restrict to generating 1 second of
audio, or more precisely L = 16384 samples sampled at
16 kHz. For the short-time Fourier transform, we select
the window size M = 512 and the hop size a = 128, gi-
ving the minimal redundancy that we consider reliable,
i.e., M/a = 4. For the analysis window g we chose a (sam-
pled) Gaussian with time-frequency ratio λ = 4 = aM/L.
Since the Nyquist frequency is not expected to hold si-
gnificant information for the considered signals, we drop
it to arrive at a representation size of 256× 128, which is
well suited to processing using strided convolutions.
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Abbildung 1: From left to right: log-magnitude spectro-
gram, distribution of the magnitude, distribution of the log-
magnitude.

We generate log-magnitude STFT coefficients since its
distribution is closer to human sound perception and,
as show in Fig. 1, it doesn’t have the large tail of the
regular magnitude STFT coefficients. To do so, we first
normalize the STFT magnitude to have maximum value
1, such that the log-magnitude is confined in (−∞, 0].
Then, the dynamic range of the log-magnitude is limited
by clipping at −r (in our experiments r = 10), before
scaling and shifting to the range of the generator output
[−1, 1], i.e. dividing by r/2 before adding constant 1.

To recover the time audio signal, first the phase deri-
vatives are estimated from the generated log-magnitude.
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Abbildung 2: The general architecture with parameters T =
16384, a = 128, M2 = 256 c = 1, 3, d = 100. Here b = 64 is
the batch size. The orange and green steps describe the pre-
and post-processing stages.

The phase is then reconstructed from the phase derivative
estimates using phase-gradient heap integration (PGHI,
23), which requires no iteration, such that reconstruction
time is comparable to simply integrating the phase deri-
vatives. For synthesis from the STFT, we use the cano-
nical dual window (24; 25), precomputed using the Large
Time-Frequency Analysis Toolbox (LTFAT, 26), availa-
ble at ltfat.github.io.

GAN architecture: The TiFGAN architecture, depic-
ted in Fig. 2, is an adaptation of DCGAN (27) and simi-
larly to SpecGAN and WaveGAN (3), we add one con-
volutional layer each to generator and discriminator to
enable the generation of larger matrices. Moreover, we
generate data of size (256, 128), a rectangular array of
twice the width and four times the height of DCGANs
output, and twice the height of SpecGAN, such that we
also adapted the filter shapes to better reflect and capture
the rectangular shape of the training data. Precisely in
comparison to SpecGAN, we use filters of shape (12, 3)
instead of the 31% smaller (5, 5). To compensate, we
further reduce the number of filter channels of the fully-
connected layer and the first convolutional layer of the
generator by a factor of 2. Since these two layers compri-
se the majority of parameters, our architecture only has
10% more parameters than SpecGAN’s in total.

Training: During training of TiFGAN, we monitored
the relative consistency γ (4) of the generated log-
spectrograms in addition to the adversarial loss, negati-
ve critic and gradient penalty. In the optimization phase,
networks that failed to train well could often be detected
to diverge in consistency and discarded after less than
50k steps of training (1 day), while promising candidates
quickly started to converge towards the consistency of the
training data, i.e., γ → 0, see Fig. 3. Networks with smal-
ler γ synthesized better audio, but when trained for ma-
ny steps, they were sometimes less reliable in terms of se-
mantic audio content, e.g., for speech they were more like-
ly to produce gibberish words than with shorter training.

Our networks were trained for 200k steps as this seemed
to provide reasonably good results in both semantic and
audio quality. We optimized the Wasserstein loss (8) with
the gradient penalty hyperparameter set to 10 using the
ADAM optimizer (28) with α = 10−4, β1 = 0.5, β2 = 0.9
and performed 5 updates of the discriminator for eve-
ry update of the generator. For the reference condition,
we used the pre-trained WaveGAN network provided by
(3)1.

Abbildung 3: Relative consistency for three networks. Gray:
failed network. Red and blue: TiFGAN.

Evaluation
To evaluate the performance of TiFGAN, we trained it
using the procedure outlined above on two datasets from
(3): (a) Speech, a subset of spoken digits ‘zero’ through
‘nine’ (sc09) from the Speech Commands Dataset (29).
This dataset is not curated, some samples are noisy or
poorly labeled, the considered subset consists of approxi-
mately 23,000 samples. (b) Music, a dataset of 25 minu-
tes of piano recordings of Bach compositions, segmented
into approximately 19,000 overlapping samples of 1 s du-
ration.

Evaluation metrics: For speech and music, we provi-
de audio examples online2. For speech, we performed li-
stening tests and evaluated the inception score (IS) (30)
and Fréchet inception distance (FID) (31), using the pre-
trained classifier provided with (3). For the real data and
TiFGAN, we additionally computed the consistency %
and the relative spectral projection error (RSPE) in dB,
after phase reconstruction from the log-magnitude, i.e.,

10 log10

(
‖|S̃| − | Sg(iSg̃(S̃))|‖

‖S̃‖

)
, (1)

where |S̃| = |Sg(s)| in the case of real data and |S̃| =

exp(M̃), with the generated log-magnitude M̃, for the ge-
nerated data. Phase-gradient heap integration was app-
lied to obtain S̃ from |S̃|.

Listening tests were performed in a sound booth and so-
unds were presented via headphones. The task involved
pairwise comparison of preference between three conditi-
ons: real data extracted from the dataset, TiFGAN gene-
rated examples, and WaveGAN generated examples. In
each trial, listeners were provided with two sounds from
two different conditions. The question to the listener was
”which sound do you prefer?”. Signals were selected at

1https://github.com/chrisdonahue/wavegan
2http://tifgan.github.io
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vs TiFGAN vs WaveGAN Cons RSPE (dB) IS FID
Real 86% 94% 0.70 -22.0* 7.98 0.5
TiFGAN – 75% 0.67 -13.8 5.97 26.7
WaveGAN 25% – – – 4.64 41.6

Tabelle 1: Evaluation results. First three left columns: Preference (in %) of the condition shown in a row over the conditions
show in a column, obtained from listening tests. Cons: averaged consistency measure ρ. RSPE: as in Eq. (1). IS: inception score.
FID: Fréchet inception distance. *These values were obtained by discarding the phase and reconstructing from the magnitude
only. For the listening tests, the signals contained the full representation.

random from 600 pre-generated examples per condition.
Each of the six possible combinations was repeated 80 ti-
mes in random order, yielding 480 trials per listener. The
test lasted approximately 45 minutes including breaks
which subjects were allowed to take at any time. Seven
subjects were tested and none of them were the authors.
A post-screening showed that one subject was not able to
distinguish between any of the conditions and thus was
removed from the test, yielding in 2880 valid preferences
in total from six subjects.

Results: The results are summarized in Table 1. On ave-
rage, the subjects preferred the real samples over Wave-
GAN’s in 94% of the examples given. The preference over
TiFGAN decreased 86%. The large gap between genera-
ted and real data can be explained by the experimental
setup that enables a very critical evaluation. Nonetheless,
it is apparent that TiFGAN performed best in the direct
comparison to real data by a significant margin. Addi-
tionally, subjects preferred TiFGAN over WaveGAN in
75% of the examples given.

The analysis of IS and FID leads to similar conclusions:
TiFGAN showed a large improvement on both measures
over WaveGAN, with still a large gap to the real-data
performance. In summary, TiFGAN provided a substan-
tial improvement over the similarly sized time-domain
WaveGAN in unsupervised adversarial audio generation.

Conclusions
In this contribution, we considered adversarial generati-
on of a well understood time-frequency representation,
namely the STFT. We proposed machine learning moti-
vated signal processing steps to overcome the difficulties
that arise when generating audio in the short-time Fou-
rier domain, taking advantage from the recent progress
in phaseless reconstruction (23).

We presented TiFGAN, a GAN directly generating in-
vertible STFT representations. TiFGAN outperformed a
similar time-domain GAN both in terms of psychoacou-
stic and numeric evaluation, demonstrating the potential
of TF representations in generative modeling.

In the future, further extensions of the proposed ap-
proach are planned towards TF representations on loga-
rithmic and perceptual frequency scales (32; 33; 34; 35;
36).
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