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Abstract
In a hands-free telephony setting for automotive envi-
ronments, driving noise distorts both the phase and am-
plitude of acquired speech signals. The aim of noise
reduction approaches is to restore clean speech before
sending it over the telephone channel. State-of-the-art
approaches use DNN-based filters that estimate real or
complex–valued filter coefficients in the frequency do-
main. While real-valued filters can only correct the spec-
tral magnitude, complex-valued filters can also correct
the phase. But the latter comes at a significantly higher
computational cost. In this work, we take an alterna-
tive approach that re-synthesizes the harmonic struc-
ture of speech by using DNN-based pitch trackers and
voiced/unvoiced detectors. The re-synthesis concentrates
on the frequency band between 0 and 1000 Hz as the hu-
man hearing system is most sensitive to phase errors in
this range. Higher frequency bands of the speech signal
are obtained with a real-valued filter whose coefficients
are estimated with a DNN. The perceived speech quality
of the processed speech is evaluated in subjective listen-
ing tests.

Introduction
Single channel speech enhancement is a widely studied
topic. It had its beginnings in the 1970th with the sem-
inal works by Callahan [1] and Boll [2] that led to a
decades lasting era of statistical signal processing ap-
proaches. Follow-up work investigated the use of a short-
time spectral magnitude estimator [3], minimum statis-
tics based noise estimation [4] and a-priori signal to noise
estimation [4]. Later approaches made use of an explicit
model of the clean speech distribution [5, 6], non-negative
matrix factorization (NMF) [7] and countless other ideas.

In the last decade, however, the era of statistical signal
processing has increasingly been replaced by the era of
deep learning. In this new era, ideal ratio masks (IRM)
[8] or the Wiener filter supression rule [9] are directly
estimated from the noisy input signal, by using a deep
neural network (DNN). Follow-up work extended this to
complex ratio masks [10, 11] that do not only correct the
spectral magnitude but also the phase information.

The argument in [10] that the phase matters is supported
by a much more detailed analysis in [12] which strongly
suggests that phase errors significantly reduce the per-
ceived quality of speech in MOS evaluations. In partic-
ular, it is shown that the perception of the lowest har-
monics is most strongly affected by phase errors. The
largest perceived difference occurs for low fundamental
frequencies around 50 Hz and it decays with increasing
frequency until it is barely noticeable around 800 Hz.

Motivated by these findings, we investigate the combi-
nation of DNN-based noise suppression with harmonic
reconstruction. The idea is to avoid complex-valued net-
works that require twice the number of nodes and four
times the computational expense. Hence, speech is re-
constructed with sinusoidal synthesis. In contrast to full-
band speech synthesis [13], only the lower frequencies are
reconstructed where strong degradations due to phase er-
rors are expected.

Overview:

The remainder of the paper is organized as follows: The
upcoming section briefly reviews DNN-based Wiener fil-
tering plus the architecture used in this work. This is
followed by an in-depth discusssion of the harmonic re-
generation approach, which is finally evaluated in the
experimental section. The paper is wrapped up with the
conclusion.

DNN-based Wiener filter
State-of-the-art noise suppression approaches use DNN-
based spectral weighting to enhance the subjective qual-
ity of speech signals. This is achieved by estimating
real-valued weights Ĥ(l, k) ∈ [0, 1] and then multiplying
these weights to the complex-valued spectral coefficients
Y (l, k) of the input signal y(n):

X̂(l, k) = Y (l, k) · Ĥ(l, k). (1)

In this equation, l and k denote time and frequency in-
dices, respectively. Y denotes the STFT of the noisy mi-
crophone signal y. And X̂ is the estimated clean speech
spectrum. A weight of 1 means that the current spec-
tral component is speech and should be preserved. A
weight of 0 means the component is noise and should be
removed.

Similiar to classical noise reduction methods, different
suppression rules like Wiener filter [1, 9] or spectral masks
[14] may be used. However, the suppression rules are
not applied directly but just used as a “target” that the
neural network is supposed to learn. For this to work,
clean speech and noise sepctra X and N need to be mixed
synthetically, as shown in Figure 1. The result of the
mixing step is noisy input spectrum Y from which the
ideal spectral weights can be calculated because all X,
N and Y are known. In case of the Wiener filter, which
is used in this work, the ideal weights are:

Hopt(l, k) = 1− |N(l, k)|2

|Y (l.k)|2
. (2)

These target weights are supposed to be learned in the
DNN training stage, i.e. they are estimated at the output
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Figure 1: Training setup for DNN-based Wiener filter.

layer of the network based on the log spectral magnitude
values log |Y | of Y that are presented at the network
input. Like in a typical regression task, the objective
of the training is to minimize the loss between network
output Ĥ and target Hopt in a minimum mean squared
error (MMSE) sense:

LMSE(Ĥ,Hopt) = ||Ĥ −Hopt||22. (3)

Figure 2 shows the network architecture used in this
work. At its core, the network consists of two recurrent
(RNN) layers that model the temporal behavior of speech
and noise over time. These are sandwiched by feed-
forward fully-connected (FC) layers (also called Dense
layers) towards the input and output layers. Similar as
originally proposed in [15], the RNNs are implemented
as Gated Recurrent Units (GRU). Additionally, residual
connections [16, 17] are used to bypass the GRU layers
and then add the GRU input to its output. This was
found to significantly improve the network performance
in preliminary experiments. As we use an FFT of size
512, both the input and output layers of the network
have 257 nodes. All the hidden layers use 256 units.
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Figure 2: Architecture of the noise suppression network.

Harmonics Regeneration
Since the denoising of speech signals with a Wiener filter
is a magnitude spectrum based method [1], the phase
spectrum of the signal is not changed. Previous work [12]
has shown that the perceived speech quality degrades not
only with distortions to the magnitude-spectrum but also
with distortions to the phase-spectrum in lower frequency
components (1000 Hz and below).

Figure 3 and figure 4 demonstrate the effect of low fre-
quency driving noise on the phase continuity at the fun-
damental frequency of human speech. The introduced
jitter in the phase of the noisy speech signal is especially
visible in the highlighted area between 0.4 s and 0.7 s.

For the complex spectrum Y (l, k), the delta-phase ∆φ(l)
with respect to the timestep l is then calculated according

to

∆φ(l) = arg (Y (l, kf0(l)) · Y ∗ (l + 1, kf0(l + 1))) (4)

with the complex argument arg(z) for any number z ∈ C.
The spectral component kf0(l) is the closest frequency
bin to the fundamental frequency f0(l) at frame l and is
given by

kf0(l) =

[
f0(l) ·N
Fs

]
(5)

where N is the number of data points used for the fast
Fourier transform and Fs is the sampling frequency.

The proposed approach to correct the delta-phase
through harmonics regeneration is realized with a DNN-
based pitch tracking and voiced/unvoiced decision.

Pitch Tracker
The pitch tracker network follows the same architecture
as the DNN based Wiener filter, except that the hidden
layers have size 200. The output layer consists of a single
node.

Since the pitch is a continous value f0 ≥ 0, the learning
task is a regression problem. To generate the target f0,
RAPT [18] was applied on the clean speech signals.

Following RAPT, we define the pitch to be 0 for unvoiced
and non speech parts in the input data. In order to not
introduce a bias in the training stage, the pitch tracking
network is only trained on voiced frames. It is left to a
separate voiced / unvoiced decision to set the final pitch
estimate to 0. Contrary to the Wiener filter network from
the previous section, the pitch tracking network uses the
mean absolute error (MAE) as a loss function:

LThrMAE(f̃0, f0) =

{
0 if f0 = 0

|f̃0 − f0| if f0 > 0
(6)

Voiced/Unvoiced Decision
As stated in the last paragraph, the pitch estimation
network is trained on voiced frames of the speech sig-
nal. Consequently the pitch tracker output can not be
expected to equal 0 for unvoiced or non-speech parts.
Hence, we train an additional voiced/unvoiced decision
(VUD) network that classifies each frame to be either
voiced or unvoiced.

Just like the pitch tracker, the VUD uses the same ar-
chitecture as in figure 2. All hidden layers are 128 nodes
wide. The single output node of the network is denoted
by pvoiced and lies within the range [0, 1]. As for most bi-
nary classification tasks, the cross-entropy is used as the
loss function for the training. For each frame the input of
the network is its logarithmic magnitude spectrum. We
then define the frame l to be voiced if pvoiced > 0.5 for
the given input feature and unvoiced otherwise. This can
be described by a binary mask

m(l) =

{
1 if pvoiced(l) > 0.5

0 if pvoiced(l) ≤ 0.5
(7)
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Figure 3: Magnitude spectrum of clean speech and corre-
sponding delta-phase at f0.

The resulting estimated pitch contour for a speech signal
is then given by

f̂0(l) = f̃0(l) ·m(l). (8)

Sinusoidal Synthesis

Using the estimated fundamental frequency f̂0(l) we can
now resynthesize the harmonic structure in the lower fre-
quency bands of voiced speech. For this, we assume f̂0(l)
is the pitch at the center of the frame l. To model a
smooth transition between adjacent frames, the linear
interpolation f̂0,s(n) of the pitch is calculated for each
time-domain sample index n. Subsequently, the exci-
tation consisting of the fundamental frequency and its
harmonics is re-synthesized as follows:

gExc(n) =

M∑
m=1

sinφm(n), (9)

where

φm(n) = φm(n− 1) +
2 · π ·m · f̂0,s(n)

Fs
. (10)

M is chosen to be sufficiently large for the generated
harmonics to cover the whole frequency range up to the
cutoff frequency fc = 500 Hz.

To model the amplitude spectrum of the speech, we as-
sume at max a linear decay of the energy from fc down
to 0 Hz. Consequently, the spectral envelope for the gen-
erated harmonics is approximated as follows:

GEnv(l, k) = max

(
k · X̂Env(l, kfc)

kfc
, X̂Env(l, k)

)
, (11)

where kfc denotes the frequency bin corresponding to the
cutoff frequency fc. Multiplying by the excitation GExc

in the frequency domain gives the re-synthesized speech
spectrum:

G(l, k) = GExc(l, k) ·GEnv(l, k). (12)
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Figure 4: Magnitude spectrum of noisy speech with additive
driving noise and corresponding delta-phase at f0.

The enhanced signal is finally obtained by cross-fading G
into the spectrum X̂ of the filtered speech signal, starting
at the cut-off frequency fc.

Experiment
A listening test was conducted to compare the subjec-
tive speech quality between signals processed only with
the DNN-based Wiener filter as well as with additional
harmonics regeneration.

All three networks - for the Wiener filter, pitch tracker
and VUD - were trained with a total of 40 h of speech
from the SPEECON corpus [19]. The data was ran-
domly selected from the “office” condition of four dif-
ferent languages: Dutch-NL, English-US, French-FR and
German-DE. Automotive driving noise and wind bursts
were used as a noise source that was added to the clean
speech data. To prevent overfitting druing training, we
used L2-Regularization with λ = 10−4 and dropouts [20]
for all hidden layers with a rate of p = 0.1. Rectified
Linear Unit (ReLU) were used as an activation function
for fully-connected layers. GRU layers were using tanh
for forward activations and the hard sigmoid function for
recurrent activations.

The evaluation dataset for the listening test was ran-
domly chosen from the SpeeCon corpus. It consists of 12
utterances from male speakers and 12 utterances from
female speakers that were not part of the training data
set. These speech files were mixed with driving noise and
wind bursts at an SNR of 5 dB and then processed with
the DNN-based Wiener filter with and without harmon-
ics generation. The difference between the processed files
was rated in a listening test with 16 participants. Fig-
ure 5 shows the results in terms of the comparison mean
opinion score (CMOS).

For male speakers, most participants slightly prefered
the processed signals with additional harmonics regen-
eration. For this case the average CMOS was 0.21 and
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Figure 5: Comparison mean opinion score for files processsed
with and without harmonics regeneration. Results are shown
individually for male and female speakers, with standard er-
ror bars. Note that the scale of the y-axis is in the range
[−0.5, 0.5] instead of the full CMOS range [−3, 3].

the standard error was 0.12. For female speakers, the
listeners preferred speech signals without the additional
processing step. Here, the average CMOS was −0.59 and
the standard error was 0.085.

Conclusion
In this paper, we evaluated a combined approach for
noise suppression and harmonics regeneration. In this ap-
proach, a DNN-based Wiener filter is used to denoise the
signal and estimate the spectral envelope. Low frequency
speech components are reconstructed by first estimating
the pitch contour with a DNN-based pitch tracker and
then re-synthesizing the harmonic structure below 500 Hz
with sinusoidal synthesis. Subjective listening tests con-
firmed that this approach enhances the subjective speech
quality for utterances spoken by male speakers. Unfor-
tunately, it also reduces the subjective quality for female
speakers. Further work might investigate the reason for
the discrepancy.
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