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Introduction

The flow-excited Helmholtz resonator is a classical exam-
ple of acoustical resonance induced by fluid flow. When
the frequency of the hydrodynamic instabilities of the
shear layer formed at the orifice of the cavity is close
to the natural resonance frequency of the resonator, high
amplitude pressure oscillations occur, and a strong acous-
tical feedback on the shear layer is observed. Similar
phenomena of sound production are also responsible for
the noise amplification in ventilation ducts with side
branches and the sound generation of air reed wind in-
struments, for example.

This paper presents three-dimensional aeroacoustic sim-
ulations of a Helmholtz resonator excited by grazing flow
in different configurations. First, the oscillations of the
shear layer are analyzed without acoustical feedback us-
ing incompressible simulations. Then, the acoustical im-
pulse response of the resonator is evaluated in the ab-
sence of the flow excitation. Finally, flow induced acous-
tical resonance is examined at different flow speeds by
means of compressible large eddy simulations. All cases
are implemented using the OpenFOAM software pack-
age. The results of numerical simulations are compared
with previous 2D models and experimental as well as
computational data published earlier by other authors.
The examinations presented in this paper continue those
discussed in [1].

Physical model

The left hand side of Figure 1 sketches the configuration
of a Helmholtz resonator excited by grazing flow. The
flow coming from the left reaches the orifice of the res-
onator where a shear layer develops. Even without the
acoustical feedback of the resonator, the layer exhibits
hydrodynamic self-oscillations whose frequencies depend
on the length of the orifice L, the freestream flow ve-
locity U , and the profile of the boundary layer at the
leading edge of the orifice. The oscillating shear layer
also provides hydrodynamic forcing on the acoustical res-
onator. Finally, the pressure response of the resonator
exerts force on the shear layer in the cross-stream di-
rection. Hence, a hydrodynamic–acoustic feedback loop
is formed by which the system is capable of producing
self-sustained oscillations.

The lumped element model of the resonator is depicted
in the right hand side of Figure 1. The damped mass–
spring oscillator is characterized by the stiffness K of
the air volume enclosed in the cavity, the resistance R
representing the radiation and wall losses, and the mass
of air M oscillating in the neck having an effective length
le that also includes the correction effect of the radiation
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Figure 1: Sketch of the flow configuration (left) and the
lumped element acoustical model (right).

impedance. Following [2], the transfer function H of the
resonator is written in the frequency domain as

H(f) =
pres

pexc
=

K

−4π2f2M + j2πfR+K
, (1)

with pexc denoting the excitation pressure and pres stand-
ing for the pressure inside the resonator. The resonance
frequency and the quality factor of the resonator are ex-
pressed from the lumped parameters as fhr =

√
K/M/2π

and Q = 2πfhrM/R. In terms of non-dimensional fre-
quencies f∗ = f/fhr the transfer function (1) reads as

H(f∗) =
1

−f∗2 + jf∗/Q+ 1
. (2)

In the sequel, the above quantities are estimated from
impulse response simulations, while the transfer function
is exploited for the prediction of resonance frequencies.

Simulation arrangement

The examined geometry is depicted in Figure 2. The
configuration consists of a rectangular wind channel and
a box-shaped resonator that is attached to the bottom
of the channel. The two parts are connected by a square
orifice that functions as the neck of the resonator. The
same configuration were used in the measurements of Ma
et al. [2], the discrete vortex model (DVM) of Dai et
al. [3], and the 3D LES study by Ghanadi et al. [4]. The
only difference in the geometry in these works is the edge
of the resonator: in the measurements a sharp edge with
30◦ was set, in the DVM the thickness of the plate is
neglected, and in the 3D simulations blunt 90◦ edges were
modeled. Here, the latter variant is examined.

A structured mesh of the model shown in Figure 2 is
created. As a spatially constant inlet velocity is applied,
an additional length of 1.5 m is added to the inlet side of
the channel to have a developed boundary layer profile
at the leading edge of the orifice. The minimum edge
sizes, used at the edges of the orifice, are ∆x = 0.6 mm,
∆y = 0.4 mm and ∆z = 0.8 mm, while the maximum
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Figure 2: Geometry of the simulated Helmholtz resonator
and wind channel. All sizes are given in mm units.

edge length is 20 mm along all axes. The edge size of two
adjacent elements differ up to a maximum of 7.5%. The
final mesh had ≈ 2.4 M elements.

At the inlet a time varying velocity is set, that smoothly
increases from zero to the final freestream velocity U in
0.25 s using a raised cosine function. The top and side
walls of the wind channel are assumed to be friction-
less and a slip boundary condition is used there, while
at other walls no-slip is prescribed. A symmetry plane
boundary condition is applied at the z = 0 plane. Turbu-
lence not resolved by the mesh is modeled using the wall
adaptive large eddy simulation method (WALE) [5] both
in incompressible and compressible cases. Postprocess-
ing is facilitated by using several pressure probes inside
the resonator and the channel and a number of velocity
probes across the orifice. All simulations were carried out
using OpenFOAM-plus [6].

Shear layer oscillations

Oscillations of the shear layer are examined first without
acoustical feedback using incompressible CFD. The fre-
quency f of the oscillations is evaluated from the velocity
probe data and compared to Rossiter’s relation:

fnL

U
=

n− α
Ma + 1/κ

→ f1 ≈
U

L
κ. (3)

Here n refers to the nth hydrodynamic mode, Ma stands
for the Mach number, κ = Uc/U is the nondimensional
convection speed of perturbations, and the phase delay
of the feedback is taken as α = 0. In the incompressible
case the linear relation on the right side of (3) is retained.

Different approaches exist for estimating κ. A simple
method used in [1] is to average the streamwise velocity
ux across the orifice for a whole time period T :

κ(u) =
1

ULT

∫ T

0

∫ L

0

ux(x, t) dx dt. (4)

Two alternative methods are also proposed in [2]. First,

Figure 3: Comparison of the convection velocities κ (top)
and the shear layer oscillation frequencies (bottom).

the convection speed of vorticity as a whole can be eval-
uated using the vorticity ωz as

κ(Γ) =
1

UT

∫ T

0

∫
ux(x, y, t)ωz(x, y, t) dS∫

ωz(x, y, t) dS
dt, (5)

where S is the surface of an analysis window of size
L × 0.75L centered at the orifice. The circulation Γ(t)
appears in the denominator. Finally, a third approach
is to evaluate the circulation density γ in the analysis
window as

γ(x, t) =

∫
ωz(x, y, t) dy, (6)

and then derive κ(γ) from phase averaged values of γ.

The top diagram of Figure 3 shows different approxima-
tions of κ evaluated from the CFD results at various flow
speeds. As observed, the three methods lead to differ-
ent results. κ(u) ≈ 0.4 is found with small deviations,
while κ(Γ) ≈ 0.5 at all flow speeds. It was difficult to
evaluate κ(γ) from the CFD results and while the mean
values are between 0.4 ≤ κ(γ) ≤ 0.5, the uncertainty is
large, which is attributed to the strictly limited number
of phase averages in the exported CFD data.

The bottom plot of Figure 3 displays the oscillation fre-
quencies resulting from the LES compared to those ob-
tained from (3). In the incompressible simulations always
the first mode was observed. The linear trend predicted
by (3) is well captured by the simulations, however, the
CFD gives slightly higher frequencies, especially at higher
velocities, with the deviations ranging from 5% to 11%.

The acoustical response of the resonator

To examine the acoustical properties of the resonator, its
impulse response was determined. In this case the bot-
tom resonator wall became the inlet of the system, while
the two ends of the simulated channel both became out-
lets, where wave transmissive boundary conditions are
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Figure 4: Top: Simulated impulse response of the resonator.
Bottom: Bode plot of the transfer function H calculated from
the fitted parameters.

Method fhr [Hz] Q

Measurement [2] 46 11
3D Helmholtz FEM 55 33
2D Navier – Stokes [1] 55 12
3D Navier – Stokes 48 21

Table 1: Acoustical properties of the Helmholtz resonator
estimated by different methods

applied. At the inlet a plenum pressure boundary con-
dition was prescribed which creates a zero-dimensional
model of an enclosed volume of gas upstream of the in-
let [6]. The response of the resonator is recorded by a
pressure probe located at the middle of the orifice.

Figure 4 shows the simulated impulse response of the
resonator. After some irregularities in the first few pe-
riods, a smooth, exponentially decaying sinous response
is attained. The resonance frequency fhr and the quality
factor Q are estimated by curve fitting. The resulting
transfer function H is plotted in the bottom diagram of
Figure 4. For the sake of comparison, Table 1 shows
the properties of the resonator estimated using different
methods. As seen, the resonance frequency predicted
by the present 3D Navier – Stokes model matches quite
well with the measurements, while the simulated qual-
ity factor is greater than the measured one. Apparently,
frequency domain simulation using standard Helmholtz
FEM gives a higher resonance frequency and Q-factor.

Flow-excited resonance

Following [2] the phase lock condition for self-sustained
resonance can be written as

2πf∗p
U∗

c

− ∠H(f∗p )− π

2
= 2nπ n = 1, 2, . . . (7)

Figure 5: Estimated frequencies of flow excited resonance
compared with simulation results

with f∗p denoting the predicted resonance frequency nor-
malized by fhr and U∗

c = Uc/(fhrL). The first term on
the left hand side represents the phase delay of the per-
turbation propagation in the shear layer, while the second
term is the delay of the acoustical feedback from the res-
onator pressure pres on the excitation pressure pexc. The
shift of π/2 converts velocity into displacement. In the
steady state, the total phase delay on the left hand side
adds up to n complete cycles when the nth hydrodynamic
mode is excited.

Equation (7) can be solved graphically in order to attain
the predicted resonace frequency f∗p at a given convection
velocity U∗

c . Figure 5 displays the predicted resonance
frequencies compared to those obtained from the LES.
The solid lines show the expected frequencies with Q =
21 that resulted from the impulse response simulations.
As seen, around U∗

c = 1 and U∗
c = 0.5 phase locking

occurs and flat plateaus are observed in the expected
frequency. The theoretical limiting cases of Q = 0 and
Q→∞ are also displayed.

For the evaluation of the CFD results the convection ve-
locity Uc was evaluated based on (5). The frequencies
extracted from the simulation results are in good agree-
ment with the expectations. In accordance with [2, 4] at
lower flow speeds (6 m/s ≤ U ≤ 9 m/s) both modes are
observed in the simulations, but the frequency locking
occurs at the second mode.

Figure 6 shows the pressure spectra at the bottom of the
resonator at three characteristic flow speeds. The nondi-
mensional velocities are defined as U∗ = U/(fhrL). The
simulation results are evaluated in short time windows
and hence the spectral resolution is lower compared to
the measured spectra. A good agreement of measured
and simulated spectra is found in all three cases.

At U∗ = 1.2 the excitation of both the first (at f∗ ≈ 0.5)
and second (at f∗ ≈ 1.0) hydrodynamic modes is visible.
The amplitude of both modes matches the measurement
quite well. In the simulation, the third peak at f∗ ≈ 1.6
is stronger than that in the measurement by about 20 dB,
however, this peak is already more than 20 dB lower than
the strongest peak of the second mode.
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Figure 6: Pressure spectra at the bottom of the resonator
at different flow speeds. Comparison of LES results to mea-
surements of Ma et al [2].

With increasing the freestream velocity, the first hy-
drodynamic mode becomes dominant, as observed at
U∗ = 2.9. The frequency and the amplitude of the first
mode agrees very well with the measured values. In this
case the first few harmonics are also clearly visible in
the spectrum. The amplitude of the second harmonic is
about 15 dB higher in the simulation.

Further increasing the freestream velocity, strong flow-
induced resonance is no longer observed. As seen, the
spectra at U∗ = 5.3 do not have tonal peaks, broadband
noise is visible instead. The measured and simulated
noise baselines are in good agreement, with the highest
deviations observed around f∗ ≈ 3.

Conclusions

Three-dimensional LES of a Helmholtz resonator excited
by grazing flow was discussed in the paper. The approach
pursued in the paper enables examining the shear layer
oscillations, the impulse response of the resonator, and
flow-excited resonance independent of each other, but
using the same simulation framework. CFD simulation
results were compared to theoretical analysis and mea-
surements reported in [2] with discussing the observed
tendencies. The simulations reproduce the observations
of the measurements quite well.

It is worth discussing some of the similarities and dif-
ferences to the previous 2D study [1]. By choosing the
2D model, the choices available for turbulence modeling
are limited: in the 2D study k-ω SST URANS simula-
tions were used, while in the 3D case a more sophisti-
cated LES is utilized. As far as the acoustical properties
of the resonator are concerned, the radiation character-
istics cannot be reproduced properly by the 2D model,

and as it was shown, the Helmholtz resonance frequency
is much closer to the measured value in the 3D simula-
tion. At higher flow speeds, a significant recirculation of
the flow was observed inside the resonator in case of the
2D model. Finally, in the 2D arrangement, an acoustical
damping layer had to be attached at the top wall of the
channel to prevent the channel section from the inlet to
the orifice from functioning as an efficient λ/4 resonator
and corrupting the resonance frequency of the system.
The latter two phenomena were not observed in case of
3D simulations. This is explained by the fact that the
2D setup cannot capture that the depth of the orifice
is only a fraction of that of the resonator or the chan-
nel. Therefore, the flow cannot expand along the z axis,
leading to strong recirculation. At the same time, as the
“depth” of the orifice is same as that of the channel in
the 2D model, the acoustical excitation of the channel at
the orifice is much more efficient and resonance is more
likely to occur inside the channel. In summary, it can be
said that the observed dissimilarities are in accordance
with the a priori expectations.
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