
Solving piezoelectric inverse problems using Algorithmic Differentiation

Nadine Feldmann1, Veronika Schulze2, Benjamin Jurgelucks3, Bernd Henning1
1 Paderborn University, Measurement Engineering Group, 33098 Paderborn, Germany
2 Paderborn University, Mathematics and its Applications, 33098 Paderborn, Germany

3 Bremen University, Optimization and Optimal Control, 28334 Bremen, Germany

Corresponding author: feldmann@emt.uni-paderborn.de

Motivation and objective
As a consequence of high prototyping costs and increas-
ing computing power, design processes in general are get-
ting more and more simulation driven. The result of
these simulation processes heavily depends on the qual-
ity of the applied material parameters describing the be-
haviour of the involved components. In the case of piezo-
ceramics, the standard material characterisation tech-
nique needs four specimens of different geometry to excite
different fundamental modes used for an analytic mate-
rial parameter calculation [1]. A problem that arises from
the usage of several specimens is the incompatibility and
inconsistency of the obtained material parameters. Only
subsets of the material parameters can be derived from
each specimen and are combined to form a single set of
parameters. Varying processing and poling conditions
thus distort the composed full set of parameters. Fur-
thermore, material parameters can only be estimated for
a certain material, but not for a unique specimen.

Emerging from the increasing use of simulation tools
in design, several numerical identification methods have
been developed applying an inverse approach, i.e. opti-
mising a set of model parameters to fit the model output
with a measured quantity [2, 3]. These techniques al-
low the application of more complex set-ups that are not
computable analytically.

Therefore, a material characterisation method is devel-
oped to use a single disc-shaped specimen to determine
all relevant parameters in a consistent way. A sim-
ple piezoelectric disc with electrodes covering both base
surfaces is chosen for its common application in single-
element transducers. The geometry is considered fixed
to a radius of ro = 5 mm and a thickness of t = 1 mm.
Since such a simple and symmetric configuration does
not yield sufficient sensitivity to all parameters, a custom
triple-ring electrode set-up is applied [4, 5]. Thereby, two
optimisation problems arise in the context of character-
ising a piezoceramic material using a single disc-shaped
sample:

1. The determination of an electrode set-up that max-
imises the sensitivity to all material parameters.

2. The determination of the material parameters itself
from measurements conducted on a specimen with
the optimised electrode set-up.

These two optimisation problems are used to illustrate
the possible advantages and disadvantages of using Al-
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Figure 1: Inverse measurement procedure for piezoelectric
material characterisation.

gorithmic Differentiation (AD) [6] in comparison to well-
known Finite Differences (FD) techniques. Algorithmic
Differentiation is a tool for calculating derivatives of a
given computer program up to machine precision by suc-
cessively applying the chain rule to each of the pro-
gram’s calculations whereas Finite Differences approxi-
mates derivatives by a difference quotient implying nu-
merical errors.

Inverse measurement procedure
Generally, a complex measurement task can be per-
formed by an inverse problem approach. When a quan-
tity is not measurable directly, a parametrisable model
can be build to represent a real measurement set-up
which output depends on the required quantity. For an
iterative solution, the model parameters then have to be
adjusted until the model behaves just like the real system.
In order to account for inaccuracies and uncertainties of
the two systems, a model outcome that minimises an ob-
jective function assigning a value to the model’s deviation
from the measurements is called the inverse problem’s
solution (see figure 1). Thus, solving an inverse problem
iteratively is mostly an optimisation task. In order to
get meaningful results with sufficiently small uncertain-
ties, the model as well as the measurement set-up have
to be sensitive to the required parameters.

Simulation model
An inverse problem always needs a parametrised model
of the actual measurement set-up. For the piezoelectric
material characterisation a Finite-Element (FE) model
is used to solve the discretised piezoelectric equations
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numerically. The material description applies a coupling
between mechanical and electrical quantities [7]:

T = −etE + cES (1)

D = εSE + eS (2)

with the mechanical stress T and strain S and the electric
field E and displacement D. cE , εS and e denote the
the mechanical stiffness, the permittivity and the cou-
pling matrices, respectively. The underlying differential
equations are based on Newton’s equations of motion and
the electrostatic Gauss law:

ρü = Bt(cE Bu + et∇φ) (3)

q = ∇(eBu− εS∇φ) (4)

where u, φ, q are the mechanical displacement, the elec-
tric potential and the charge and ρ denotes the density.
B and ∇ are the operator of spacial derivatives and the
nabla/del operator, respectively. The material parame-
ters to be determined are the entries of the matrices cE ,
εS and e, when the density is considered to be known.
Because of the transverse isotropy of piezoceramic ma-
terials certain entries have to be zero or are dependant
leaving only ten independent parameters. For adding
Rayleigh damping [8], additional two parameters have to
be considered resulting in the parameter vector

pmat =
[
cE11, c

E
12, c

E
13, c

E
33, c

E
44, ε

S
11,

εS33, e15, e31, e33, αM, αK

]
. (5)

The measured quantity is chosen to be the electrical
impedance since it is easy to obtain. Applying a given
charge pulse q(t) with an appropriate broadband spec-
trum the resulting potential φ(t) can be calculated using
e.g. the Finite Element software CFS++. The frequency
dependant electrical impedance then is given by

Zsim(f) =
F {φ(t)}

j2πfF {q(t)}
, (6)

where j describes the imaginary unit, f is the frequency
and F {·} denotes the Fourier transform.

The chosen triple-ring set-up for increased sensitivities
can be parametrised using four parameters being the ring
radii when the disc radius ro = 5 mm and the thickness
t = 1 mm are given (see figure 2):

r = [r1, r2, r3, r4]. (7)

Caused by the multiple electrodes, several impedances
have to be measured and computed by considering the
impedance between two shortened electrodes and the re-
maining electrodes.

• Z1: el2 and el3 to el1

• Z2: el1 and el3 to el2

• Z3: el1 and el2 to el3

This leads to a total of three impedances whose absolute
values are shown for an exemplary realistic material in
figure 3. For the optimisation process these impedances
can be combined by simple addition.
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Figure 2: Triple-ring electrode set-up
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Figure 3: Electric impedances for an exemplary material.

Sensitivity calculation
For the solution of an inverse problem a change in the
input parameters has to be visible in the impedance. This
property can be described by a measure of sensitivity,
e.g. the derivative of the impedance with respect to the
material parameters:

Υ(pj , r) =

3∑
n=1

∥∥∂pj
|Zn(fi,p, r)|

∥∥
fi
, (8)

with the discrete frequencies fi and ‖·‖x denoting the
L2-norm regarding x. The overall sensitivity can be cal-
culated by

Ῡ(r) = ‖wjΥ(pj , r)‖pj
, (9)

where wj is a weighting factor compensating the different
magnitudes and units of the material parameters.
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Optimisation problems
The determination of piezoelectric material parameters
with a triple-ring electrode set-up involves two consec-
utive optimisation problems. First the ring radii are
optimised (assuming an initial set of material parame-
ters) in order to increase the overall sensitivity Ῡ. When
a sufficient sensitivity is obtained, the set-up is used for
the fitting of the material parameters to a measured
impedance. During these optimisation processes deriva-
tives play a crucial role for the sensitivity calculation and
for the trust-region-based optimisation algorithms [9,
10]. Typically, these derivatives are approximated using
Finite Difference approaches. In the following, it is to
be evaluated in how far an Algorithmic Differentiation
approach yields advantages in the described optimisation
problems.

Optimising the ring radii

The first optimisation problem can mathematically be
stated by

min
r
−Ῡ(r). (10)

For practical purposes, electrodes have to be at least
1 mm for electrical contacting and the distance between
electrodes at least 0.3 mm. In this case, two different
derivatives have to be calculated:

1. The derivative of the impedance with respect to the
material parameters being the sensitivities for the
calculation of the objective function.

2. The derivative of the objective function with respect
to the radii for the optimisation process (i.e. mixed
second derivatives).

Here, the focus lies on the first kind of derivatives, since
the use for the optimisation process is analysed in the sec-
ond case. Calculating the optimal radii using AD leads
to an electrode configuration resulting in higher sensitiv-
ities (e.g. for the parameter ε11 FD yields an increase in
sensitivity by 1.37 whereas AD increases the sensitivity
by 2.57 in comparison to an initial set-up [11]). This
can easily be explained when the objective function is
calculated for a fixed [r2, r3, r4] = [3.5, 3, 4] mm and a
varying r1 in figure 4. It is obvious that the vast num-
ber of local minima in the FD case lead to a very tedious
optimisation, whereas the quite smooth AD case seems
much more viable, what is exactly what the optimisation
results show. For the higher dimensional case with four
radii, the problem only increases. Thus, when the ob-
jective function itself includes derivatives like in the case
of maximising sensitivities, using AD is inevitable. The
resulting radii that are used in the following are

ropt = [3.68, 4, 4, 5] mm. (11)
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Figure 4: Sensitivity regarding ε11 for different radii r1 [11].

Optimising the material parameters

The second optimisation problem can mathematically be
described by

min
p
‖log10 |Zmeas(fi)| −

log10 |Zsim(fi,p, ropt)|‖2fi , (12)

where Zmeas is an objective impedance, Zsim is the simu-
lated impedance and ropt are the optimal radii calculated
beforehand. Normally, the objective impedance would be
a measured one, but here, a simulated one is used to en-
able the possibility to explicitly evaluate the optimisation
outcome. For the optimisation, a step-by-step strategy
is applied (see [12]), where a preceding sensitivity analy-
sis identifies certain frequency ranges best suited for op-
timising each parameter. Derivatives for the gradient-
based algorithm are calculated using FD or AD (where
possible, i.e. unfortunately not for damping parameters).
The optimisation using FD leads to a reconstruction of
the material parameters in a relatively short time. Using
AD does in this case not yield any relevant advantages
and might possibly even introduce certain disadvantages.
On the one hand, the FD optimisation is more robust
for certain cases. E.g. when the sampling frequency for
the excitation and resulting signals is chosen too small,
this effect is much stronger in the AD derivatives than
in those calculated via FD. For a realistic material pa-
rameter set pideal and a sampling frequency of 50 MHz
the optimisation does not recover the material parame-
ters pideal and the objective function does not converge to
zero. When the sampling frequency is doubled or a har-
monic simulation is used, this phenomenon disappears.
On the other hand, the calculation time for the given FE-
implementation increases when AD is used (despite the
reduced number of function evaluations). This is mainly
due to the application of the forward mode of AD imple-
mented in CFS which needs a whole simulation for each
material parameters. Using reverse mode would drasti-
cally reduce the computation time, but was not imple-
mentable in the simulation software CFS++ (see [11] for
further explanations).
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Conclusions
The determination of piezoelectric material parameters
using a single specimen implies several challenging opti-
misation problems. In the context of these optimisation
problems derivatives play an important role. Its com-
putation via Finite Differences induces numerical errors
that are not present when Algorithmic Differentiation is
used. The influence of these two methods for derivative
calculation in the context of piezoelectric optimisation
problems are analysed. When the derivatives are used for
the optimisation algorithm itself, FD does slightly out-
perform AD especially regarding computation time which
might be due to the missing possibility to implement re-
verse mode for AD. In contrast, when the objective func-
tion itself is a derived quantity, using AD is inevitable.
The numerical errors using FD leads to a non-smooth
objective function showing many local minima and thus
preventing a successful optimisation result.
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